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Abstract

We study competition in data-driven markets, where the cost of quality production de-

creases in the amount of machine-generated data about user preferences or characteristics.

This gives rise to data-driven indirect network effects. We construct a dynamic model of

R&D competition, where duopolists repeatedly determine innovation investments. Such

markets tip under very mild conditions, moving towards monopoly. After tipping, innova-

tion incentives both for the dominant firm and for competitors are small. We show when

a dominant firm can leverage its dominance to a connected market, thereby initiating a

domino effect. Market tipping can be avoided if competitors share their user information.

JEL classification: D43, D92, L13, L43, L86

Keywords: Big Data, Datafication, Data-driven Indirect Network Effects, Dynamic Competi-

tion, Regulation

∗We are grateful for comments on an earlier draft to Wieland Müller, Mauricio Rodriguez Acosta, Flo-
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1. Introduction

In recent decades, the rate of technological progress has accelerated and most of it has occurred

in fields that draw heavily on machine-generated data about user behavior (Brynjolfsson and

McAfee, 2012).1 This development was coined “the rise of big data” or “datafication” and

is explained by two simultaneous, recent technological innovations (Mayer-Schönberger and

Cukier, 2013): first, the increasing availability of data, owing to the fact that more and

more economic and social transactions take place aided by information and communication

technologies which easily and inexpensively store the information such transactions produce

or transmit; second, the increasing ability of firms and governments to analyze the novel big

data sets. Einav and Levin (2014) ask: “But what exactly is new about [big data]? The short

answer is that data is now available faster, has greater coverage and scope, and includes new

types of observations and measurements that previously were not available.”

In this paper we attempt to better understand data-driven markets: markets where the

cost of quality production is decreasing in the amount of machine-generated data about user

preferences or characteristics (henceforth: user information), which is an inseparable byprod-

uct of using services offered in such markets. Given that it has been documented that some

data-driven markets are characterized by imperfect competition and subject to indirect net-

work effects,2 we ask under which conditions a duopoly can be a stable market structure in

a data-driven market, and when the propensity to market tipping, that is, to monopolization

becomes overpowering. We also study under which conditions and how a dominant firm in one

data-driven market can leverage its position to another market—including traditional markets

that were not data-driven before its entry.

We construct and analyze a dynamic model of R&D competition, where duopolistic com-

petitors repeatedly choose their rates of innovation. The important feature of the model is

that it incorporates data-driven indirect network effects that arise on the supply side of a mar-

ket, via decreasing marginal costs of innovation, but are driven by user demand.3 Demand for

1One example is “ ’ambient computing’—a future in which robotic assistants are always on hand to answer

questions, take notes, take orders or otherwise function as auxiliary brains to whom you might offload many

of your chores” (The New York Times, 2015b). A second example are ubiquitous sensors such that all kinds

of physical objects can be monitored in real-time, for instance, automobiles collecting information about the

car’s and the driver’s performance while driving (which is compared to other drivers), or jet engines (to predict

when maintenance is needed) (The New York Times, 2012). See Einav and Levin (2014) for more examples.
2Argenton and Prüfer (2012) produce evidence and theory supporting these characteristics in the

search engine industry. Edelman (2015) reports about competitive dynamics in transportation net-

works. The markets for online search, digital maps, online social networks, or video platforms are all

highly concentrated. See https://www.datanyze.com/market-share/maps/ and http://www.dreamgrow.com/

top-10-social-networking-sites-by-market-share-of-visits-august-2016/, respectively.
3Data-driven indirect network effects are fundamentally different from direct network effects, where con-
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the services of one provider generates user information as a costless by-product, which Zuboff

(2016) calls “behavioral surplus.” It is private information of the provider who collected it and

can be used to adapt the product better to users’ preferences, thereby increasing perceived

quality in the future. Thus, higher initial demand reduces the marginal cost of innovation: it

makes it cheaper to produce one additional unit of product or service quality, as perceived by

users.

We show that, for almost all initial quality differences, the market will eventually tip and

one firm will dominate the market. Moreover, we show that such dominance is persistent, in

the sense that, once the market has tipped, the weaker firm will never acquire more than a

negligible market share in the future. The market is even tipping if it requires continuous,

small investments in innovation to keep consumers’ perceived quality constant, which appears

to be a reasonable description of dynamic, high-tech markets. Our main result is robust to

changes in the time horizon, that is, whether competitors determine innovation investments

using a finite time horizon T , for T high, or whether they play a game with an infinite time

horizon. We identify a strong first-mover advantage in data-driven markets, which leads

towards monopolization and is built upon data-driven indirect network effects.

An important feature of a tipped market is that there are very little incentives for both

the dominant firm and the ousted firm to further invest in innovation. The reason is that,

in the stable steady state where one firm has virtually no demand and the other firm has

virtually full demand, the ousted firm knows that the dominant firm offers consumers both a

significantly higher quality level and has significantly lower marginal costs of innovation, due

to its larger stock of user information. The latter characteristic enables the dominant firm to

match any innovative activities of the ousted firm at lower marginal innovation cost and hence

keep its quality advantage. As demand follows quality differences in our model, the smaller

firm gives up innovating if its quality lags behind the larger firm’s too much. Knowing this,

the dominant firm’s best response is to also save on investing in innovation—and still reap

the monopoly profit.

Going a step further, we study under which circumstances a dominant position in one

data-driven market could be used to gain a dominant position in another market that is

(initially) not data-driven. We show that, if market entry costs are not prohibitive, a firm

sumption utility of one consumer increases in the amount of other consumers on the same network and which

are, hence, completely demand-driven, for instance, in telecoms (Besen and Farrell (1994), Economides (1996),

Shapiro and Varian (1999)). They are also different from dynamic economies of scale (or learning-curve ef-

fects), which are completely supply-driven, for instance in aircraft manufacturing (Benkard, 2000). In contrast

to these mechanisms, data-driven indirect network effects cannot easily be copied by competitors or destroyed

by the arrival of a new technology. To complicate matters empirically, these different effects can be overlapping

in practice. For instance, online social networks are characterized both by direct and by indirect network

effects.
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that manages to find a “data-driven” business model, can dominate any market in the long

term. We then introduce the concept of connected markets, which captures situations where

user information gained in one market is a valuable input to improve one’s perceived product

quality in another market. We show that user information in connected markets is two-way

complementary, such that incentives to acquire user information in one market can justify

market entry in another market, and vice versa.

Consequently, if technology firms realize that user information constitutes a key input

into the production of quality in data-driven markets, they need to identify other markets

where these data can be used as well. In those connected markets, the same results as in

the initial markets apply, suggesting a domino effect : a first mover in market A can leverage

its dominant position, which comes with an advantage on user information, to let connected

market B tip, too, even if market B is already served by traditional incumbent firms.

We also study the normative implications of our results. Because a tipped market provides

low incentives for firms to innovate further, market tipping may be negative for consumers.4

It also deters market entry of new firms, even if they may develop a revolutionary technology.

Therefore, we analyze the effects of a specific market intervention that was recently proposed:

what if firms with data-driven business models have to share their (anonymized) data about

user preferences or characteristics with their competitors?

We show that a dominant firm’s incentives to innovate further do not decline after such

forced sharing of user information, even in a dynamic model.5 Instead, we show that data

sharing (voluntary, or not) eliminates the mechanism causing data-driven markets to tip. The

intuition is that the key assumption that lead to market tipping in our baseline model—more

demand today leads to lower marginal cost of innovation and, hence, to higher equilibrium

quality tomorrow—depends on a data collector’s exclusive proprietorship of user information.

With mandatory data sharing, both competitors face the same cost function; a firm with

initially higher demand does not have a cost advantage in producing quality. As a result, the

sharing of user information avoids the negative consequences for innovation that are specific

to data-driven markets.6 The net welfare effects are ambiguous, though. We show that data

sharing is likely to increase welfare if indirect networks effects are sufficiently pronounced or if

firms have similar initial market shares or if the market is close to being monopolized already.

4From an antitrust perspective, the underprovision of innovation is our theory of harm in data-driven

markets.
5Argenton and Prüfer (2012) suggested a related policy for the search engine market. But their paper only

contained a static model, which was hard to interpret over time, a shortcoming addressed by the dynamic

model in our paper.
6Of course, these markets can still be dominated by one or a few firms, just as any other market. But in

that case, we could be more confident that the source of dominance is a continuous, fundamentally superior

quality-price ratio and not a windfall innovation-cost reduction from earlier success in the market.
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The model offers a rationale why some firms in data-driven markets are highly successful

while their competitors fail, and precisely which type of data are crucial to compete in such

markets.7 Our model can be used to rationalize strategies of firms like Alphabet/Google,

which first tipped the search engine market, our most prominent example of a data-driven

market. Today, however, Alphabet “has started to look like a conglomerate, with interests in

areas such as cars, health care, finance and space” (The Economist, 2016). Our model can

also identify the characteristics of industries that may be prone to entry of data-driven firms,

which has wide-ranging implications for suppliers, buyers, antitrust and regulation authorities

in many industries, including some traditional sectors that are not thought of as data-driven

today.

In the next section, we present our baseline model and discuss its main assumptions.

Section 3 analyzes subgame-perfect Nash equilibria of the model with a finite time horizon T

(as well as the limit case T →∞). In Section 4, we analyze the incentives and consequences

of market entry of a data-driven firm into a traditional market and develop the notions of

connected markets and the domino effect. The effects of data sharing among competitors

are investigated in Section 5. We analyze robustness and study an extension of the model in

Section 6: for the case where the time horizon is infinite, we solve for Markov equilibria and

show that the results are also robust if perceived product quality declines exogenously over

time. Section 7 connects our model to the literature and discusses applications. Section 8

concludes. All proofs are in the Appendix.

2. The Model

2.1. The Baseline Model: Competing with Big Data

There is a unit mass of consumers each demanding one unit of a good in each period t ∈

{1, 2, . . . , T}. Consumers face duopolistic producers i ∈ {1, 2} and value product quality

qi ≥ 0. The firms’ quality difference is denoted by ∆ = q1 − q2, such that demand for firm i’s

product in period t is realized as follows:

D1(∆) =


1+∆

2 if ∆ ∈ [−1, 1]

1 if ∆ > 1

0 if ∆ < −1

D2(∆) =


1−∆

2 if ∆ ∈ [−1, 1]

0 if ∆ > 1

1 if ∆ < −1.

(1)

7For instance, in February 2016, Alphabet briefly became the world’s most valuable company by market

capitalization. Its main competitors in the search engine market, Yahoo and Bing (Microsoft), are reported to

have significant troubles, however (The Economist, 2016). Uber was recently named “the world’s most highly

valued private startup” (Wall Street Journal, 2015).
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We consider goods where consumption or the usage of a service in period t reveals some

information about the consumer’s preferences or characteristics and where this information

can be easily logged, such as in search engines, platform sites for accommodation or car

sharing, or digital maps. We call such information user information, which grows linearly in

Di and can be stored by the seller automatically and for free. User information is an input

into a firm’s efforts to improve its perceived product quality and therefore reduces firm i’s

cost of innovation. It constitutes data-driven indirect network effects in this model.

Firms repeatedly set innovation levels xi,t ≥ 0, such that firm i’s perceived product quality

in period t increases by xi,t = qi,t − qi,t−1.8 A firm that invests in order to increase its

quality by x units has to bear the following investment costs in the period of investment:

c(x,Di) = γx2/2+αx(1−Di(∆)). Di(∆) is the demand the firm had in the previous period and

γ > 0, α ∈ [0, 1) are parameters measuring the difficulty to innovate (γ) and the importance

of data-driven indirect network effects (α). We assume α < 1 to rule out excessively expensive

investment, i.e. the marginal costs of innovation should not be prohibitively high, to make

the game interesting.9 To avoid messy case distinction, we also assume γ > 1/4 which limits

the size of the investment. In particular, this assumption implies that in a one shot game the

optimal investment is less than 2, that is, one period investments will not change the market

share from 0% to 100%.

In period 1, we assume some starting value ∆0 and the respective cost functions of firms

1 and 2. Hence, period 1 should not be thought of as the birth of the industry but the

first period of observation. Since we employ subgame-perfect Nash equilibrium and therefore

backwards induction as solution concept, actions in prior periods will not change the solution.

The functional form of c(x,Di) implies that costs are increasing and convex in the rate

of innovation and are lower for the firm with the bigger market share in the previous period.

Fixed costs of quality do not depend on Di and are, just as the marginal cost of producing

the good or service, apart from inventing it, assumed to be zero.

Now we can define the central concept of this paper, data-driven markets.

Definition 1. (Data-driven markets) A data-driven market is a market characterized by

indirect network effects driven by machine-generated data about user preferences or charac-

teristics, s.t. the marginal costs of innovating, c(x,Di), are decreasing in demand: cx,Di < 0.

In each period, only one of the two firms can invest in innovation in order to increase its

quality, and then demand realizes. In odd periods, firm 1 can invest, whereas in even periods,

firm 2 can invest.

8For better exposition, we will drop subscripts wherever there is no danger of confusion.
9The specific value α < 1 implies that in the final period T there are values of ∆T−1 (around 0) where both

firms would like to invest a positive amount (if they were the one investing in T ).
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We assume that a firm’s revenue is proportional to its demand and, for notational sim-

plicity, we assume that revenue equals demand. For example, each user can be shown an

advertisement and the expected revenue generated by an ad is normalized to 1.

Firm i maximizes its sum of discounted profits, where per-period profits equal demand in

periods where firm i cannot invest and equal demand minus costs in periods where firm i can

invest. The common discount factor is δ ∈ [0, 1). All choices are perfectly observable by the

players. We solve this model for subgame-perfect Nash equilibria (SPNEs).

2.2. Discussion of Model Assumptions

Before we analyze the model, we briefly discuss some key assumptions.

Data driven indirect network effects: In the context of search engines, our most promi-

nent example of a data-driven market, the comprehensive computer science literature review

in Argenton and Prüfer (2012) signifies the long-documented importance of large amounts

of search log/query log data for producing search engine quality. Preston McAfee, the Chief

Economist of Microsoft, recently confirmed that the quality of search page results improves in

the amount of “rare” queries it receives (where “rare” means the specific search string is unique

in the year—but more than 50 % of all queries are rare) (McAfee et al., 2015). Therefore, the

search engine with more demand improves its quality faster. He also confirms that a search

engine with more demand/scale acquires data on new queries more quickly and that it has

more other data to make inferences about users’ queries. He concludes (p.34): “Even at web

scale, more data makes search better.” See also He et al. (2017).

Demand: Demand, as in equation 1, can be micro founded by a simple Hotelling model.

There is a continuum of consumers of mass 1 distributed uniformly between -1 and 1. Firm 1

(firm 2) is located at point -1 (1). A consumer located at z has utility v+ q1− (1 + z)/2 when

using firm 1 and a utility of v + q2 − (1 − z)/2 when using firm 2, where v > 1 and qi ≥ 0

is the quality of firm i. Not consuming gives zero utility and is therefore strictly dominated.

Solving for the indifferent consumer yields the demand in (1).

This setup implies that a firm has a monopoly over access to its users, that is, we as-

sume single homing of users. This assumption is reasonable because, for instance, a user’s

specific query to a search engine or a car sharing platform is only conducted at this search

engine/platform. Hence, only this firm learns something about this user’s preferences or

characteristics. Over time, the firms generate different data sets about user information.

Revenues: Our assumptions can be interpreted as setting the nominal price to use a firm’s

services for consumers to zero but to charge fees to (unmodeled) sellers for access to (targeted)
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consumers, for instance, via advertising. Consider the search engine market, online social

networks, or other platform markets. Consumers are usually matched “for free” with sellers

or advertisers, who pay a fee to the platform (and naturally have to recoup these expenses

from consumers).

Notably, some data-driven markets are also two-sided implying that players on each market

side value the number of players on the other side and constituting cross-market side network

effects. But while an extensive literature has studied competition in two-sided markets (e.g.

Armstrong (2006), Rochet and Tirole (2006), Hagiu and Jullien (2011)), the importance of

data-driven indirect network effects as studied in our paper has gone rather unnoticed. More-

over, many data-driven markets are not two-sided, for instance, maps. Others are semi-two-

sided, in the sense that advertising sellers care about the number of consumers but consumers

do not care too much about the number of sellers. This holds in particular for markets where

ads are only a secondary product, from consumers’ point of view, such as in internet search

or social networking.10

In such a setting, it is straightforward to provide a micro foundation of our revenue as-

sumption: There is a mass of advertisers who can earn profit ν by selling to a consumer.

In each period, every consumer is receptive to one ad. That is, for each consumer there is

one matching seller such that the consumer will buy the product of the seller if, and only if,

the platform he uses displays the matching seller’s ad. A platform can identify the matching

seller of a user with probability η > 0. Assume that platforms charge a price per successfully

matched consumer (this pricing scheme is usually called “price per click” in online markets).

The platform – being a monopolist over its users on the advertising side of the market – will

then charge a price of ν. The sellers will multihome, that is, they are willing to advertise on

both platforms, and the revenue of a platform is η ∗ ν ∗Di and therefore proportional to its

demand, as assumed in the model.11

Alternating moves: The game structure with only one firm being able to act in each period

has a long tradition in repeated oligopoly interaction (e.g. in Cyert and de Groot (1970), or

Maskin and Tirole (1988)). To appreciate its use, imagine the same model as described above

with both firms investing every period. It is straightforward to show that even in the static

version of this game no pure-strategy equilibria exist.

10 See the controversial discussion in the literature whether being exposed to (targeted) online advertising

brings consumers positive, negative, or zero utility. Edelman et al. (2007), Chen and He (2011), Athey and

Ellison (2011), Goldfarb and Tucker (2011), or Taylor (2013) provide more details.
11Alternatively, if even the price per click, not only the entire bill, were increasing in the precision of the ad,

which can be proxied by Di, the gains from market tipping would be even more pronounced. This would speed

up the tipping process shown in section 3. Hence, our assumption of linearly increasing expected revenues in

demand is conservative.
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The reason is that firms might exit the market: Suppose ∆ is close to 1 and T = 1. If firm

1 knew that firm 2 was investing zero, firm 1’s best response would be to invest just enough

to capture the whole market, that is, to set x = 1 −∆, given that costs are not prohibitive.

In this case, however, it is a best response for firm 2 to invest a small amount in x in order to

stay in the market, as long as α < 1/2, i.e. if marginal costs of investment are not prohibitive.

If firm 2 invests a positive amount, then firm 1 will best respond by investing an even

higher amount (note that firm 1’s marginal innovation costs are much lower because ∆ is

close to 1) in order to push firm 2 out of the market anyway. But in this case it is a best

response for firm 2 not to invest at all.

Hence, a matching pennies-like situation has emerged: for ∆ close to 1, equilibrium strate-

gies have to be mixed. By assuming alternating moves, we can focus on pure-strategy equi-

libria, which are simpler and more intuitive.

Time horizon: A finite time horizon T can be motivated by managers having either fixed-

term contracts or planning to retire at a certain age. More importantly, we think of the finite

time horizon more as a technical assumption. We are indeed mainly interested in the case

where the time horizon is long, that is, in the limit as T →∞.

It is well known that the equilibrium sets in games with an infinite time horizon are large.

When we analyze equilibria of games with a finite time horizon T and then take the limit

as T → ∞, we can approximate some equilibria of the game with an infinite time horizon

but clearly not all. For instance, Fudenberg and Levine (1983) show that the equilibrium set

of the infinitely repeated game is the set of limits of ε-equilibria of finitely repeated games

as the number of periods approaches infinity and ε approaches zero. We focus on subgame-

perfect equilibria instead of ε-equilibria. Note that, for a finite time horizon, our model has

an essentially unique subgame-perfect Nash equilibrium for generic parameter values.12

The equilibria that we select have the advantage of (i) satisfying subgame perfection, (ii)

being relatively tractable and (iii) retaining intuitive properties of the finitely repeated game.

We show some properties that hold for all stationary Markov equilibria of the game with an

infinite time horizon in Section 6.2.

3. Analysis

We are interested in the development of market structures over time as a function of initial

(exogenous) differences in firms’ qualities. Therefore, our central question is, under which

12Essential uniqueness means that a firm has a unique optimal investment x in period t for almost all quality

differences ∆t−1; i.e. different equilibria differ only in actions on a negligible set of quality differences.
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conditions will a market characterized by data-driven indirect network effects (not) tip?

Definition 2. (Market Tipping): A market is weakly tipping if one firm obtains full

demand in some future period (and the other firm does not). A weakly tipping market is

strongly tipping if from some period t′ < T − 1 onwards one firm has full demand in every

period in which it invests. A market is absolutely tipping if from some period t′ < T onwards

one firm has full demand in all following periods.

3.1. Period T

To start with, consider the problem in the final period T and assume that T is even, which

implies that firm 2 can invest. Firm 2 is faced with a situation where the quality difference

after period T − 1, ∆T−1, is given and each unit of x it innovates increases q2 and hence

decreases ∆. Firm 2’s maximization problem is:

max
x≥0

D2(∆T−1 − x)− γx2/2− αx(1−D2(∆T−1)). (2)

The solution to this maximization problem is:

xT =



0 if ∆T−1 ≤ −1

1 + ∆T−1 if − 1 < ∆T−1 < −2γ−1+α
2γ+α

1
2γ −

α
γ (1−D2(∆T−1)) if ∆T−1 ∈

[
−2γ−1+α

2γ+α , Uα

]
0 if ∆T−1 > Uα

(3)

where

Uα =

1/α− 1 if α ≥ 1/2

1 + (1− 4α(1− α))/(4γ) if α < 1/2.

Zero investment and therefore ∆T = ∆T−1 emerges if either firm 2 has already grabbed the

market (∆T−1 ≤ −1) or if investment is prohibitively expensive, which can be the case if both

α and ∆T−1 are high. The second case leads to ∆T = −1, that is, firm 2 grabs the complete

market in period T . The third case in (3) corresponds to ∆T = ∆T−1 − x, being interior.13

Note that firm 2’s investment if ∆T is interior is decreasing in ∆T−1: A higher ∆T−1

implies lower D2(∆T−1) (lower market share) and therefore higher (marginal) investment

costs due to data-driven indirect network effects.

13Note that by γ > 1/4 and α ∈ [0, 1), we have −1 < −(2γ − 1 + α)/(2γ + α) < Uα, that is, the case

distinction in (3) is well defined.
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The optimal investment xT leads to the following profits for both competitors:

V T
1 (∆T−1) =


2γ+α−1+(2γ+α)∆T−1

4γ if ∆T−1 ∈
[
−2γ−1+α

2γ+α , Uα

]
0 if ∆T−1 < −2γ−1+α

2γ+α

D1(∆T−1) else

(4)

V T
2 (∆T−1) =


4γ+1−2α+α2

8γ − 2γ+α−α2

4γ ∆T−1 + α2

8γ∆2
T−1 if ∆T−1 ∈

[
−2γ−1+α

2γ+α , Uα

]
2−α−γ

2 − (α+ γ)∆T−1 − α+γ
2 ∆2

T−1 if − 1 < ∆T−1 < −2γ−1+α
2γ+α

D2(∆T−1) else.

(5)

These value functions have two noteworthy characteristics. First, V1 is increasing while V2

is decreasing in ∆T−1. This is straightforward: a producer benefits from having higher prior

quality. Second, the value functions are piecewise quadratic (or linear). This is an implication

of the linear quadratic setup we chose and will simplify the following analysis.

3.2. Period t < T

Consider a generic period t < T . If t is odd, firm 1 can invest and solves the following

maximization problem:

max
x≥0

D1(∆t−1 + x)− γx2/2− αx(1−D1(∆t−1)) + δV t+1
1 (∆t−1 + x). (6)

The first-order condition (for interior ∆t and ∆t−1 at points of differentiability of V t+1
1 ) is:

1

2
− γx− α1−∆t−1

2
+ δV t+1

1
′
(∆t−1 + x) = 0. (7)

By contrast, if t is even, firm 2 invests. The resulting first-order condition is:

1

2
− γx− α1 + ∆t−1

2
− δV t+1

2
′
(∆t−1 − x) = 0. (8)

We first show an intuitive monotonicity result.

Lemma 1. (Quality monotonicity) (i) V t
1 (∆t−1) is increasing and V t

2 (∆t−1) is decreasing

in ∆t−1. (ii) ∆t is increasing in ∆t−1.

In all periods t, firm 1 benefits from higher ∆t and firm 2 benefits from lower ∆t. Further-

more, a higher ∆t leads to a higher ∆t+1. This second result is rather powerful as it implies

that an increase in the initial quality difference will lead to a higher quality difference in all

following periods.

Let It be the set of quality differences ∆t for which in all following periods (up to T ) the

equilibrium quality difference is in (−1, 1), that is, no firm has full demand in any period; the

quality difference is “interior.” Put differently, as long as the quality difference is in It, the

market remains competitive in all following periods. Hence, the market does not tip.

Lemma 1 implies the following.
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Lemma 2. It is an interval.

We will now show an important technical property of value functions and quality invest-

ment in the interval It.

Lemma 3. (Monotonic dynamic quality investment incentives) Assume that the equi-

librium investment is strictly positive in all periods if ∆t ∈ It. Restricted to the interior of It,

(i) V t
i is quadratic and convex; (ii) in odd periods, firm 1’s investment is linearly and strictly

increasing in ∆t−1; (iii) in even periods, firm 2’s investment is linearly and strictly decreasing

in ∆t−1.

Lemma 3 states that, for quality differences in It, firm i will invest more if it had more

demand in the previous period. This means that equilibrium forces do not destroy the basic

cost advantage generated by indirect network effects. Instead, having relatively higher quality

than a competitor incentivizes a firm to invest even more heavily in the future.

Knowing the incentives for firms to innovate over time, as long as competition is persistent,

we now need to study the effects on dynamic equilibrium quality differences and demand.

Proposition 1. (Market tipping for T →∞) The length of It is less than 2
(1+α/(2γ))dT−te/2

.

Consequently, the length of I0 shrinks to zero at exponential speed for T →∞.

Proposition 1 shows that the market will weakly tip if the time horizon T is sufficiently

long. One firm will have full demand in some periods for almost any initial quality difference

if only T is large enough. The idea behind the result is to show that firm 1’s (2’s) investment

is increasing (decreasing) in ∆t−1 on It. Intuitively, this is not surprising as a higher (lower)

∆t−1 implies more user data and lower marginal costs of investment for firm 1 (2).

Now take some ∆̃ ∈ IT−2. If ∆T−2 = ∆̃, then investment by firm 1 in T − 1 will lead

to some ∆̃T−1 and investment by firm 2 in T will lead to some ∆̃T . As ∆̃ ∈ IT−2, no firm

will have full demand in later periods and therefore ∆̃T−1 ∈ (−1, 1) and ∆̃T ∈ (−1, 1). Now

suppose ∆̃ + ε is also in IT−2 for some ε > 0. Firm 1’s investment in T − 1 is increasing in

∆T−2, say with slope s1 > 0. Hence, ∆T−1 will now be ∆̃T−1 + ε(1 +s1). Firm 2’s investment

is decreasing in ∆T−1, say with slope −s2 < 0, and therefore ∆T will be ∆̃T +ε(1+s1)(1+s2).

Since ∆̃ + ε ∈ IT−2, we must have ∆̃T + ε(1 + s1)(1 + s2) ∈ (−1, 1). How big could ε possibly

be? If ε > 2/((1 + s1)(1 + s2)), then ∆T would be more than 2 higher when ∆T−2 = ∆̃ + ε

compared to when ∆T−2 = ∆̃. But this is impossible as in both cases ∆T ∈ (−1, 1). Hence,

we can conclude that any two points in IT−2 are at most 2/((1 + s1)(1 + s2)) apart. That is,

the length of IT−2 is at most 2/((1 + s1)(1 + s2)). If we could find a lower bound s > 0 for

s1 + s2 which holds at all points in It (for any t), we could argue by backwards induction that

the length of IT−2n is less than 2/(1 + s)n and consequently the length of I0 is arbitrarily

11



small when T is sufficiently large. Our linear quadratic setup allows us to find such an s easily.

However, the same argument applies for any setup where the slope of the investment function

– and therefore the effect of indirect network effects on investment – is bounded away from

zero on all It.

The result of Proposition 1, however, is not entirely satisfactory. We know that some

producer will acquire full demand in some period—but what will happen thereafter? Will

this firm remain dominant in the following periods or could its competitor turn the market

around and have full demand itself in some later period?

Lemma 4. (Persistent dominance) (i) If firm i has full demand in period t < T − 1,

then firm i will have again full demand in a later period and firm j 6= i will not have full

demand in any following period. (ii) Take a stationary equilibrium of the game with an infinite

time horizon that is the limit of a subgame-perfect equilibrium of the finite-length game, as

T → ∞.14 If firm i has full demand in period t, then firm i will have full demand in all

periods t+ 2n for n ∈ N. Furthermore, firm j will have less demand in all consecutive periods

than in t− 1.

Lemma 4 shows that a firm will remain dominant once it has become dominant in the

following sense: If firm i has full demand in one period, then firm i will have full demand in

more periods afterwards while firm j will never have full demand. Combining Proposition 1

with Lemma 4 implies that in the game with an infinite time horizon one firm will eventually

dominate the market by having full demand (at least) every second period while the other

firm does not have full demand, i.e. the market is strongly tipping.

Corollary 1. (Market tipping for T =∞) Take an equilibrium of the game with an infinite

time horizon that is the limit of subgame perfect equilibria of the game with finite time horizon

T as T →∞. In this equilibrium, the market is strongly tipping for almost all initial quality

differences ∆0.

The situation where firm 2 still has some demand in every second period while firm 1 has

full demand in every other period is depicted in the left panel of Figure 1. Let us note that

innovation stabilizes at a very low level. The intuition is that firm 2 is only motivated to

innovate by its profits in the period in which it invests (and not by effects on future profits)

because δ = 0 in the left panel. Furthermore, firm 2 does not want to invest a lot because the

marginal costs of innovation are rather high due to its low demand. Firm 1 simply undoes

firm 2’s (low) investment each period and obtains monopoly profits.

If firm 1 cares sufficiently about the future, that is, if δ is not too low, then it will usually

be more profitable to push firm 2 completely out of the market, i.e. the market tips absolutely;

14We show in the appendix that such an equilibrium exists, see section A.2.
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Figure 1: Strong tipping (left) and absolute tipping (right). Parameters: T = 30, α = 0.4,

γ = 1, ∆0 = 0, δ = 0 (left), δ = 0.25 (right)

see the right panel of Figure 1, where we assume δ = 0.25. Firm 1 will increase q1 so far that

∆ grows above 1 and firm 2 finds it unprofitable to fight back. As soon as this is achieved,

however, firm 1 can stop investing forever and enjoy monopoly profits in all remaining periods.

The user data that firm 1 then gathers as a monopolist (for free) is not used for innovation

but as a barrier to entry. Firm 2 will not try to get back into the market because in this case

firm 1 would start using its superior data to immediately push firm 2 out again.

Which of the two scenarios in figure 1 occurs in equilibrium depends on parameter values.

The following Lemma gives a clear cut answer in case the parameter α – which represents

data-driven indirect network effects – is sufficiently large.

Lemma 5. (Absolute tipping for high α) Let α ≥ 1/2 and T finite. Then every weakly

tipping market is absolutely tipping.

The reason is that a high α implies high marginal costs of investment (even at zero invest-

ment) for a firm with zero market share. Consequently, it is no longer profitable to “invest

back” after one’s market share has dropped to zero. In particular, for α ≥ 1/2, marginal

costs are higher than marginal revenue in the current period (which is 1/2 for our demand

function). This implies that investment is not profitable this period and – as the other firm

will invest enough next period to again grab the whole market – the investment also does not

pay off in the future.
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4. Connecting Markets: Entering a traditional market with a data-based business

model

4.1. Market entry when the time horizon is finite

Consider a market, where a representative incumbent firm operates with traditional invest-

ment methods that do not exploit data-driven indirect network effects. We study the strategic

situation that arises when a potential entrant, who uses a data-based business model and,

hence, is harvesting indirect network effects (henceforth a data-driven firm) contemplates

to enter the traditional market. As an example, consider the market for road maps in the

late 1990s—and what happened to traditional map producers after the entry of digital map

providers, most notably Google. We will argue in Section 7 that this case offers a classical

application of the theory of connected markets, which we present now.

What is important for this model is that exploiting user information creates value for the

users but that such exploitation is unique to data-driven firms. Traditional firms do not have

the option to create consumption value in this way, for two reasons. First, their product

might not provide them with data on usage. Second, personalization might technologically

be incompatible with their product. Both reasons are true, amongst many more industries,

in the case of traditional paper maps.

Consider the general framework of our T -period model, just as in Section 3. But now

assume that firm 2 is an incumbent firm in a market operating a traditional, that is, not

data-driven business model. Firm 1 is a potential entrant employing a data-driven business

model. Assume that firm 2’s costs of investing are γ′x2/2 + α′x/2 (i.e. for α′ = α firm 2 has

the same marginal costs of investment at x = 0 as firm 1 has with 50% market share). To

rule out excessively expensive investment, we assume α′ < 1, as before. We also assume that

prices are fixed and normalize prices such that demand equals revenue. Hence, the investment

x is the only choice variable in all periods after period 1.

Firm 1, by contrast, operates under the same cost function as in the previous sections and

has the additional choice in period 1 whether it wants to enter the market (and invest some x

of its choosing, which will add to the initial quality difference ∆0), or not to enter. Entering

comes at a fixed cost F ≥ 0. To simplify notation, we will assume that T is even. Clearly,

markets where entry has already taken place emerge as a subgame of this model.

It is straightforward to solve for firm 2’s optimal investment in period T which turns out

to be:

xT2 (∆T−1) =


1−α′
2γ′ if ∆T−1 ∈

[
1−α′−2γ′

2γ′ , 1 + (1−α′)2
4γ′

]
1−∆T−1 if ∆T−1 <

1−α′−2γ′

2γ′

0 else.
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The resulting period T value functions are:

V T
1 (∆T−1) =


1
2 + 1

2∆T−1 − 1−α′
4γ′ if ∆T−1 ∈

[
1−α′−2γ′

2γ′ , 1 + (1−α′)2
4γ′

]
0 if ∆T−1 <

1−α′−2γ′

2γ′

1 else.

V T
2 (∆T−1) =


1
2 −

1
2∆T−1 + (1−α′)2

8γ′ if ∆T−1 ∈
[

1−α′−2γ′

2γ′ , 1 + (1−α′)2
4γ′

]
1− α′+γ′

2 + (γ′ + α′/2)∆T−1 − γ′

2 ∆2
T−1 if ∆T−1 <

1−α′−2γ′

2γ′

0 else.

In this setup, Lemma 1 still holds true in case firm 1 enters because cxD ≤ 0 for both firms

(with equality for firm 2). Consequently, the set of period t quality differences (It) for which

the equilibrium quality difference in all consecutive periods is in (−1, 1) is an interval, that is,

Lemma 2 still holds as well. Lemma 3 is also still true. This leads to the following result:

Proposition 2. (Tipping tendency in a traditional market) Let T →∞ and consider

the subgame where firm 1 enters. The length of I0 shrinks to zero and the market tips in a

finite number of periods for almost all initial quality differences ∆0.

Corollary 2. (Entry and tipping in a traditional market) Let T →∞. (i) For F very

high, say F > F̄ , firm 1 does not enter (regardless of ∆0). (ii) There exists an F̂ < F̄ such

that for F ∈ [F̂ , F̄ ] the market tips in favor of firm 1 whenever (∆0 is such that) firm 1 enters.

(iii) For very low F and not too low ∆0, firm 1 might enter and leave the market again in a

later period.

The interesting part of Corollary 2 is (ii), which features an all-or-nothing result (for

certain parameter values):15 either the data-driven firm is deterred from entry, or not. But if

it enters the traditional market, it will eventually take it over completely. The mechanism at

play is the same as the one studied in the previous section. Conditional on firm 1’s market

entry, it does not matter in the long-run, anymore, that the product quality of the established

firm may be superior (and hence ∆0 < 0). It is sufficient that firm 1 finds it worthwhile to

enter the market and to invest in innovation such that it obtains some positive demand. As

soon as this is achieved, the indirect network effects play into firm 1’s hands because, from

that point onwards, its marginal cost of innovation only decrease. As the traditional firm 2

cannot react by increasing its own quality at the same rate and for the same cost as firm 1,

it is bound to lose market share. Because the model contains no other potential disruptions,

market tipping cannot be avoided anymore then.

15Part (iii) includes some cases where the entrant can enter with positive demand but her costs of investment

are substantially higher than the incumbent’s. It is then profitable to enter and realize profits while waiting to

be kicked off the market. The case does not strike us particularly relevant.
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In this case, firm 1 managed to transform the traditional market into a data-driven market.

If another firm with a data-driven business model would show up to compete with firm 1, the

model in section 2 would apply henceforth. It follows that the first data-driven firm entering

a traditional market has a strong first-mover advantage.

The inevitability of market tipping after entry of firm 1 shifts our attention to the first

part of Corollary 2. The long-term structure of the traditional market is decided at the point

of time where firm 1 decides about its entry. The decision depends on the cost that firm 1 has

to bear to create a product that consumers would accept as a (potentially imperfect, inferior)

substitute to the existing products in market. This cost, F , is a function of the product

characteristics expected by consumers. It also depends on legal requirements, for instance, to

obtain a public authority’s approval or to acquire a license. Consumers’ expectations regarding

the must-have features in this market, as is pointed at by the threshold cost level F̄ , depend

on the actions and quality investments of the traditional incumbent firm. If firm 2 manages

to innovate herself by improving consumption utility to such a degree that the market entry

cost are prohibitive for firm 1, there will be no entry by firm 1. In this case, the traditional

market will not be transformed into a data-driven market.

Before we think one step further, let us define the notion of connected markets.

Definition 3. (Connected markets) Markets A and B are connected if cx1,B ,D1,A
< 0 or

cx1,A,D1,B
< 0.

This definition builds on our definition of data-driven markets. Where we characterize a

data-driven market as a market with machine-generated indirect network effects, the notion

of connected markets focuses on the impact of user information gained in one market for the

cost of innovation in another market.16 We take the connectedness of two specific markets as

given. But firms can be creative in developing new business models and, thereby, exploring

the degree of connectedness between two markets. Hence, if the market entry costs are not

prohibitive, a firm that manages to find a “data-driven” business model can dominate most

traditional markets in the long term.

The connectedness of two markets can be used in two ways. If cx1,A,D1,B
< 0, one can

imagine a situation where market A in isolation might not tip in favor of firm 1, for instance,

because indirect network effects, measured by α, are not important enough. But after entering

market B, the additional data gained in market B will allow firm 1 to innovate much cheaper

in market A; hence market A may tip (quicker) in favor of firm 1. The additional profits

generated in market A might even make entry into market B profitable where entry into B,

16For instance, think of the user information a search engine gains. A part of that information is geographic

(where to drive? where to eat?). Hence, this part of the information is also a valuable input when developing

a product for markets of geographic information, such as maps or route planners.
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in isolation, would not have been profitable.

The second way to exploit connectedness is associated with cx1,B ,D1,A
< 0. Tipping in

market A might then make entry in market B feasible. To see this, suppose that entry into

market B is prohibitively expensive at the outset but market A tips in favor of firm 1. Firm 1

has therefore more data from market A, which will reduce innovation costs in market B. This

might make entry into market B feasible, which will then also tip in favor of firm 1.

Based on Corollary 2 and the definition of connected markets, we obtain the following

Result without proof.

Result 1. (Domino effect) Say firm 1 is active in market A and identifies a connected

market B where entry is not prohibitive (F ≤ F̄ ). Then firm 1 will enter B when it has

become sufficiently dominant in A.

This Result adds on top of Corollary 2 the idea that two characteristics are complemen-

tarily helpful in entering and dominating any traditional market: (i) finding a business model

that connects a new market with one’s home market, that is, to develop a service or product

that makes good use of user information gained in one’s original market. (ii) possessing a

lot of relevant user information in one’s home market. Result 1 then states that firm 1 can

leverage its dominant position from market A to market B. This process can be repeated in

markets C, D, etc., which explains the term domino effect. It also gives rise to an empirical

prediction: In traditional markets, our model suggests that we observe races between data-

driven firms to identify data-driven business models utilizing their existing data stocks and

traditional companies trying to increase data-independent product quality.

4.2. Market entry when the time horizon is infinite

Here we test the validity of our results on the entry of firms with a data-driven business model

in a traditional market when firms’ horizons are infinite. Specifically, we study stationary

Markov equilibria of the game with infinite time horizon that are limits of equilibria of games

with finite time horizon as T → ∞. Still firm 1 is assumed to use a data-driven business

model and, hence, can exploit indirect network effects but firm 2 is a traditional firm, without

the chance to benefit from indirect network effects.

Lemma 6. (Market entry in the infinite game) Take a stationary Markov equilibrium

of the game with infinite time horizon that is the limit of subgame-perfect equilibria in the

game with finite time horizon T as T → ∞. If firm 1 enters and ∆2 > ∆0, then the market

will eventually tip in favor of firm 1.

Lemma 6 states that early movements in quality or market shares are indicative of whether

the market will tip. More precisely, if an entrant with a data-driven business model enters a
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market and manages to gain positive market share immediately after entry, then the market

will tip in her favor.

5. Policy proposal: Data sharing

Our analysis so far has shown that market tipping is a robust phenomenon on markets with

data-driven indirect network effects. This result has important policy consequences.

As shown in Lemma 4 and exemplified in Figure 1, the investment incentives of both firms

stabilize at a low level once a market has tipped, significantly lower than in the period where

both firms are still competing for the market.17 Reduced innovation incentives of originally

R&D-intensive firms are negative for consumers.

Therefore, we study the effects of a regulatory measure that was recently brought up by

Argenton and Prüfer (2012) in the context of search engine markets. They propose that

competing search engines should be forced to share their (anonymized) search log data (that

is, user information, according to our definition) amongst each others. In their static model,

this measure would avoid market tipping. Here we broaden the scope to data-driven markets

in general, and we set out to analyze the effects of data sharing in our dynamic framework.18

In the context of our model, the proposal implies that both firms obtain the data of all

consumers when innovating. We will show that the forces that lead to market tipping in the

earlier sections of this paper are no longer present after this regulatory measure is introduced.

As both producers now have access to the data of all users, the cost function of each firm is

c(x) = γx2/2: for innovation purposes, the cost function is specified as if the firm had had full

demand in the previous period. Note that this is effectively the same as our baseline model

with α = 0. In particular, Lemma 1 and Lemma 2 still hold. However, Proposition 1 no

longer implies that I0 shrinks to zero, as T →∞, because the bound on its length no longer

depends on T if α = 0. The following Lemma is similar to Lemma 3 but actually tighter.

Lemma 7. (Interior innovation with data sharing) Assume data sharing. Restricted

to the interior of It,

17This result is reflected by Edelman (2015), who cites the oral testimony of Yelp’s CEO before the Senate

Judiciary Subcommittee on Antitrust, Competition Policy and Consumer Rights on September 21, 2011, and

writes: “Google dulls the incentive to enter affected sectors. Leaders of TripAdvisor and Yelp, among others,

report that they would not have started their companies had Google engaged in behaviors that later became

commonplace.” The problems of TripAdvisor and Yelp can be explained by the theory of connected markets

described in Section 4.
18Argenton and Prüfer (2012) also discuss the technical feasibility and potential legal avenues for implement-

ing their proposal. They tentatively conclude that in both dimensions unsolved issues remain but that, in

principle, the proposal is feasible.
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� V t
i is linear;

� firm i’s investment in period t is

xti =
1− δT−t+1

2γ(1− δ)
. (9)

Equation (9) already shows that It can only be non-empty if γ is not too small and δ is not

too close to 1. This should not be surprising: For γ → 0 investment is costless and, therefore,

the firms will invest huge amounts in innovation that lead outside the interior range (−1, 1)

for ∆. The same is true for δ → 1: If every investment bears fruit forever and there is no

discounting, the firms will want to invest arbitrarily large amounts. Equation (9) allows us to

compute how much ∆ changes over two periods (when each firm can invest once) if ∆t−1 ∈ It:

xt1 − xt+1
2 =

δT−t − δT−t+1

2γ(1− δ)
=
δT−t

2γ
on It.

This implies that It is shifting upwards over time. The reason for the shift is the alternating

move structure of the model. When investing in period 1, firm 1 takes the revenues effect of

its investment for all T periods into account. Firm 2 invests a period later. Therefore, its

investment has a revenue effect for all but the first period (which is already over). Hence, firm

2’s marginal revenue of investing is lower. In contrast to the result with α > 0 (see Proposition

1), however, the length of I0 does not need to shrink for T → ∞. The just described timing

effect is independent of the specific ∆t in It. Hence, the length of It does not change while

It shifts upwards over time. The reason for It shrinking to zero in Proposition 1 was the

existence of indirect network effects, the competitive effects of which are eliminated by data

sharing.

One might wonder by how much It shifts. Let īt be the upper bound of It. Equation (9)

states that īt increases over two periods by δT−t/(2γ). Summing over t = 1, 3, . . . ,∞, this

implies that ī∞− ī0 = δ/(2γ(1− δ2)). If δ is not too high and γ not too low, then this will be

a sufficiently low number that allows a non-zero length of I0 even if T →∞.

To give a drastic example, consider δ = 0: Then xt is the same in all periods and, as long

as the first-period investment does not lead to a monopoly in the first period, no firm will

dominate in any period.19 In this sense, mandating data sharing will prevent tipping if (i) δ

is not too high and γ not too low and (ii) the market is reasonably symmetric at the time of

mandating, that is, if |∆0| is not too high.

While data sharing can prevent market tipping, its welfare consequences are ambiguous

in our model. Welfare in a given period consists of the two firms’ revenues, which sum to 1,

the investing firm’s cost, and consumer surplus. Here we adopt the Hotelling interpretation

19This means unless ∆0 ≥ 1− 1/(2γ), both firms will be active in all periods.
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of our demand structure, where consumers are uniformly distributed between -1 and 1 (see

Section 2.2). Total welfare equals the discounted sum of welfare in periods 1 to T .

Welfare effects of data sharing are ambiguous because several effects interact: First, sharing

data directly reduces innovation costs. In our model, costs are reduced by αx(1−Di(∆t−1)).

Second, quality is higher due to lower marginal costs of innovation and – in particular in later

periods – because market tipping may be prevented: Recall that the remaining firm stops

innovating after the other firm exited the market. The additional innovation is beneficial for

consumers. Third, more consumers may be able to buy from their preferred firm. In the

Hotelling interpretation of our demand function, transportation costs of some consumers will

be lower if both firms stay in the market. Fourth, higher investments (especially in later

periods) imply higher costs. Note that investment costs are duplicated in case both firms stay

active in the market. This last effect reduces welfare. Depending on parameter values the

overall effect of data sharing on welfare can be positive or negative.

Figure 2: Data sharing (compared to no data sharing) reduces welfare in shaded regions

and improves welfare in white regions. Parameters: T = 30, γ = 2, δ = 0.3, α-grid:

0.1,0.11,. . . ,1.0, ∆0-grid: -0.9,-0.91,. . . ,0.9.

Figure 2 shows some numerical examples. For each (α,∆0) combination on the grid we

computed the subgame perfect equilibrium with and without data sharing where investments

have to be chosen on a fine grid (grid point distance 0.001). The shaded area are those (α,∆0)

combinations where equilibrium welfare without data sharing is higher than with data sharing.

As one would expect, data sharing can reduce welfare only if α is low (the shaded region) as

this limits the beneficial first effect. For most parameter values (the white area), data sharing

improved welfare. Data sharing is likely to increase welfare if firms have similar initial market

share or if the market is close to being monopolized already (in the latter case the first effect
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simply reduces the cost of tipping the market completely).

6. Robustness and Extensions

6.1. Decaying quality

An important critique of the notion of data-driven markets (Definition 1) is that user prefer-

ences are unstable and subject to fashion trends over time. One could therefore argue that the

data about user preferences generated on a data-driven market at one point of time become

more and more obsolete. In this case, the product quality perceived by users decays over time

if the provider does not constantly invest in quality improvements (or innovation).

In terms of our baseline model, this means that perceived quality q decays if a firm does

not innovate. Assume, for concreteness, that qi,t+1 = µqi,t + xi,t+1 where µ ∈ [0, 1]. Hence,

quality decays at rate 1 − µ. This implies that, without any investments, ∆t+1 = µ∆t: the

quality difference shrinks due to quality decay. Quality decay is therefore a force working

against market tipping. While it is still true that firms with higher market share have lower

marginal costs of investing, firms with higher quality are also more affected by quality decay.

Whether firms with a certain quality advantage will be able to tip the market depends on the

relative strength of the data-driven indirect network effects compared to the decay effect.

In this section, we show that Proposition 1 still holds as long as µ is not too small. In

particular, we will show that the length of I0 still converges to zero at exponential speed if the

sufficient condition µ(µ + α/(2γ)) > 1 holds. That is, our results hold if µ is not too small.

The derivation mirrors the one in the main text and we will therefore only quickly describe

those steps where the analysis changes.

In the final period T , equations (3), (4) and (5) remain valid if we write µ∆T−1 instead

of ∆T−1. In particular, V T
i is linear-quadratic in ∆T−1 on IT .

For t < T , the first-order condition on the interior of It (for firm 1) changes from (7) to:

1

2
− γx− α1−∆t−1

2
+ δV t+1

1
′
(µ∆t−1 + x) = 0.

Because Lemma 1 is crucial for the remainder of the analysis, we replicate its proof in some

more detail in the Appendix. The result is that Lemma 1 remains valid. Lemma 3 also still

holds as including µ does not really change the linear structure of the first order condition.

Using these intermediate results we obtain the following proposition.

Proposition 3. (Market tipping with quality decay) Assume µ(µ + α/(2γ)) > 1. The

length of I0 shrinks at exponential speed to zero in T .

Quality decay affects the firm with higher quality more than the firm with lower quality
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as decay is modeled proportionally to existing quality. This force counteracts the main mech-

anism of our paper – namely that higher quality firms have more demand and therefore more

user data leading to lower investment costs. We expect to find similar results as in 3 also in

other extensions that introduce a way in which higher quality leads to a disadvantage: As

long as these effects are not too strong, similar results as in the main section of our paper will

hold.

6.2. Infinite Time Horizon

6.2.1. Markov equilibria

To understand whether the tipping result shown in the previous section is an artifact of our

equilibrium concept, looking at limits of subgame-perfect Nash equilibria of finite-time horizon

games, we now analyze the model with an infinite time horizon.20

Games with an infinite time horizon usually have many equilibria. In particular, there

can be equilibria which are not limits of equilibria in T -times repeated games, as T →∞. A

commonly used restriction, which we also apply here, is to look at Markov equilibria.21 These

are equilibria in which the equilibrium strategy depends only on a “state variable” and not on

the full history of the game or the specific time period. The state variable in our setting is

the quality difference ∆. In this section, we derive some properties that hold for all Markov

equilibria. The main purpose is to show that our results on market tipping in the previous

section are not a special feature of the equilibrium of the T -times repeated game (as T →∞)

but that market tipping, in some form, is a robust phenomenon across different equilibria of

games with an infinite time horizon when there are data-driven indirect network effects.

To express our results clearly, we define the notions of steady state and stability.

Definition 4. ((Stable) Steady State): Steady State denotes a quality difference ∆ such

that, in a given equilibrium, ∆t = ∆ implies ∆t′ = ∆, for all t′ = t + 2n, for n = 1, 2, . . . .

A Steady State ∆ is (strictly) stable if, for some ε > 0, |∆t+2 − ∆| ≤ (<)|∆t − ∆| for all

∆t ∈ (∆− ε,∆ + ε).

Proposition 4. (Tipping after threshold quality difference) Let α ≥ 1/2. In every

Markov equilibrium, ∆ = −1 and ∆̄ = 1 are strictly stable steady states.

20Such games are usually called “stochastic games”, see (Fudenberg and Tirole, 1991, ch. 13), which might

however sound a bit odd in our deterministic setup.
21Strictly speaking, we focus in this section on stationary Markov equilibria, where strategies do not depend

on the time period t. We call these equilibria “Markov equilibria” for short. Note, however, that value functions

will still depend on whether a period is odd or even due to the alternating move assumption. A formal definition

of Markov equilibrium can be found in Mailath and Samuelson (2006) (ch. 5.5) or in Fudenberg and Tirole

(1991) (see ch. 13.1.2 for a discussion of Markov strategies in separable sequential games of perfect information

and 13.2.1 for a formal definition of Markov equilibrium).
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Proposition 4 considers cases where α ≥ 1/2, that is, where indirect network effects are

sufficiently important in the innovation process. There, a firm with zero demand in the

previous period would find zero investments optimal in a one-shot game. This parameter

restriction rules out equilibria where, say, firm 1 has full demand in all odd periods but both

firms take turns in investing a small amount such that firm 2 has a small, positive market

share in even periods and zero market share in odd periods. (With α ≥ 1/2 firm 2 would make

losses in such a situation; see the discussion after lemma 5.) The Proposition implies that a

market tips whenever the quality difference between the competitors is sufficiently large.

Going a step further, we study how large the set of initial quality differences is that finally

leads to market tipping. Especially, we are interested in the role of firms’ discount factor, δ.

Lemma 8. For every ε > 0, there exists a δ̄ > 0 such that the market tips for all initial

quality levels apart from a set of measure less than ε if δ < δ̄.

Lemma 8 states that the market tips for almost all initial quality differences if the discount

factor δ is sufficiently low: If firms do not value the future too much, the market will tip.

To understand the intuition of this result, say the market should tip for all initial quality

differences but an interval of ε length. For any ε > 0, there is a discount factor δ̄ such that

the Lemma is true whenever δ < δ̄. This can be understood as a continuity property: In the

one shot game, firm 1’s (firm 2’s) investment is increasing (decreasing) in the initial quality

difference due to the indirect network effects.22 Hence, there is only a single quality difference

at which the two firms’ investments would be equal. For quality differences above (below)

this level, firm 1 (firm 2) invests more than its rival. Consequently, the market would tip for

all but this one initial quality level if myopic players repeatedly play the game. While full

myopia corresponds to δ = 0, Lemma 8 shows that this idea still holds approximately for low

but positive discount factors.

6.2.2. Multiplicity of Markov Equilibria: Numerical Analysis with Finite State

Space

The results in the previous subsection do not shed light on the market outcome if the discount

factor is high and initial market shares are approximately equal. This subsection contains a

numerical analysis that addresses these issues and illustrates why stronger analytical results

are hard to come by: We show that there is a multiplicity of Markov equilibria and in some

of these equilibria the market does not tip but reach an interior steady state. However, our

tipping result is robust in the sense that the market tips if the data-driven indirect network

effects are sufficiently strong. The multiplicity of Markov equilibria also shows why there

22This monotonicity does not hold in the regions where the investing firm grabs the entire market, but then

the market will obviously tip, even within a single period!
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is a need for equilibrium selection among the Markov equilibria. This is a more technical

motivation for our focus in earlier sections on the limit of subgame-perfect equilibria of finite-

length games as the time horizon T tends to infinity, which is a relatively intuitive selection

rule.

We will use a slight variation of our model. In particular, we will assume in this subsection

that firms cannot invest any arbitrary amount but that only qualities on a finite grid are

feasible. The reason for this change in modeling is the following: Solving for Markov equilibria

in models with an infinite state space is subject to several technical problems. The usual way is

to solve either via value-function or policy-function iteration. However, these methods may not

converge to an equilibrium because the value function operator is not a contraction mapping

in games (in contrast to single agent decision problems where it usually is). Furthermore,

these methods will determine only one equilibrium (if they converge) while there might be

many equilibria – possibly with very different properties and outcomes. See Iskhakov et al.

(2015) and their references for a more thorough discussion of these problems.

Assuming a finite grid of qualities allows us to use the methods described in Iskhakov et al.

(2015) to solve for all pure-strategy Markov equilibria. This is done through an algorithm

similar to backwards induction. However, backward induction is carried out on the state space

and not in time, as in the previous sections. If both firms have the maximally feasible quality

on the finite grid, then no one can invest now or in any future period and therefore the value

functions are determined by the parameters. Next, states in which one firm has the maximal

quality and the other has the second-highest feasible quality are analyzed. The latter firm has

two possible decisions: invest to the maximum quality, or don’t investment at all. The value

of the first possible decision was derived in the previous step and the latter decision leads to

a steady state where again the value is determined by the parameters. Iterating further, one

obtains all Markov equilibria of the game; see Iskhakov et al. (2015) for the details.

To see why there can be multiple equilibria in our setting, consider the third step, in which

we analyze the state where both firms have the second-but-highest feasible quality. Assume

for now that firm 1 invests if it is its turn to invest. If it is firm 2’s turn to invest, firm 2

has to choose between not investing (and falling behind next period as firm 1 will invest)

and investing to the maximal quality. Say, it is optimal to invest in this case. If, however,

firm 1 does not invest in this state (when it is its turn), firm 2’s decision problem will be

different: If firm 2 does not invest, it will not fall behind and instead a steady state in the

second-but-highest quality results. This is more attractive than falling behind and it might

well be optimal for firm 2 not to invest in this case.

Hence, there can be two equilibria here. One in which both firms invest when it is their

turn and one where neither does. At every interior point of the quality grid, these situations
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might repeat and the number of Markov-perfect equilibria can grow exponentially. Table 1

shows that multiplicity is indeed a prevalent phenomenon in our setting.23

n 2 3 4 5 6 7 8 9 10

# eq. 2 4 8 16 38 96 113 113 113

Table 1: Number of pure-strategy Markov equilibria for different grid sizes (n is number of

grid points). The distance between grid points is fixed to 0.25. Parameter values: α = 0.75,

γ = 1, δ = 0.75, lowest feasible quality is 0.

As the number of equilibria is rather large in any reasonably fine grid, equilibrium selection

becomes necessary for any meaningful analysis or prediction. In the previous sections, we

selected equilibria that were limits of subgame-perfect Nash equilibria of finitely repeated

games. Here, we use two different selection methods as a robustness check, which differ in

how they deal with the multiplicity described above.

In the Invest Selection, we resolve the multiplicity by always selecting the possibility where

both firms invest. In the Steady State Selection, we resolve the multiplicity by always selecting

the equilibrium where neither invests.

The steady-state selection arguably tries to prevent tipping by creating (interior) steady

states wherever possible. In table 2, we report the long-run outcomes for each equilibrium for

different strengths α of the data-driven indirect network effects and different initial quality

differences. We distinguish between outcomes where one firm obtains 100% market share in

the long run, where both firms have positive market share and less than maximum quality,

and situations where both firms have maximum quality.24

Unsurprisingly, tipping occurs more often under the invest selection. Notably, however,

Table 2 displays that tipping in favor of firm 1 occurs even in some cases where the initial

quality level of firm 1 is smaller than firm 2’s (where q1,0 < q2,0 = 2.5). The reason for this

result is that, in our alternating-move game, firm 1 has a first-mover advantage because it

can invest in quality already in period 1, whereas firm 2 has to wait until period 2. Market

tipping in favor of firm 1 in this situation implies that, on the equilibrium path, firm 1 uses

its first-mover advantage and heavily invests in q1,1 before firm 2 can react. This increases ∆

and, consequently, increases firm 2’s innovation cost, c(x,D2(∆)). Note, however, that this

advantage cannot explain all tipping in favor of firm 1: as the left columns of Table 2 show,

if q1,0 is sufficiently low as compared to q2,0, the market tips in favor of firm 2.

23The code calculating these and the following equilibria is available on the authors’ websites.
24The latter can occur if investment costs are very low and one could argue that the grid should be larger

for these parameter values.
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More importantly, market tipping occurs under both selection rules if α is sufficiently

high. That is, our main result, that data-driven indirect network effects lead to market

tipping, appears to be robust to different equilibrium selection methods. Just as above, we

can also show that, in this numerical example, equilibrium innovation investments are zero

once a market has tipped. Absent other changes, such as quality decay (see Section 6.1), the

dominant firm permanently keeps a huge quality lead without ever having to innovate again.

q1,0 = 0.5 q1,0 = 1.0 q1,0 = 1.5 q1,0 = 2.0 q1,0 = 2.5 q1,0 = 3.0 q1,0 = 3.5

Invest Selection

α = 0.0 tip2 tip2 MaxQ MaxQ MaxQ MaxQ MaxQ

α = 0.2 tip2 tip2 MaxQ tip1 tip1 tip1 tip1

α = 0.4 tip2 tip2 tip1 tip1 tip1 tip1 tip1

α = 0.6 tip2 tip2 tip1 tip1 tip1 tip1 tip1

α = 0.8 tip2 tip2 tip1 tip1 tip1 tip1 tip1

α = 1.0 tip2 tip2 tip1 tip1 tip1 tip1 tip1

Steady State Selection

α = 0.0 tip2 IntQ IntQ IntQ MaxQ MaxQ MaxQ

α = 0.2 tip2 IntQ IntQ IntQ tip1 tip1 tip1

α = 0.4 tip2 tip2 IntQ IntQ tip1 tip1 tip1

α = 0.6 tip2 tip2 IntQ tip1 tip1 tip1 tip1

α = 0.8 tip2 tip2 tip2 tip1 tip1 tip1 tip1

α = 1.0 tip2 tip2 tip2 tip1 tip1 tip1 tip1

Table 2: Long run outcomes: Given q2,0 = 2.5, the table shows the steady state outcome to

which the market converges for different values of firm 1’s starting quality q1,0 and different

strengths of the data-driven indirect network effects α. “tipi”: i has 100% market share;

“MaxQ”: both firms have the maximal quality; “IntQ”: interior steady states in which both

firms have positive market share. Parameters: γ = 1, δ = 0.75, quality grid {0.0, 0.01, . . . , 5.0}

7. Data-driven Markets in Literature and Practice

In this section, we connect to the literature and use our model to explain some recent de-

velopments (and sketch potential future ones). For the purpose of this exercise, it is irrel-

evant whether the user information a data-driven firm has access to consists of aggregate

or individual-level data about user preferences or characteristics. For instance, if a firm has

access to the geodata locating many users’ mobile phones, in real time, it can “predict” traffic
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jams or the amount of people attending a certain event. Here it is not necessary to know the

identity of the individual mobile phone owners. In turn, if a firm can track an individual user

over time, for instance because the user is logged in to some service or exhibits other individual

characteristics (such as a specific combination of software versions on her mobile phone), then

the firm can personalize its services. Both types of user information can be combined, such

that an individual user can receive suggestions about where to go, whom to meet, or what to

dine, which are based on the preferences of other users with similar characteristics.

7.1. Search engines

The seminal example to understand the dynamics of data-driven markets better is the market

for search engines and Alphabet/Google in it, whose “mission is to organize the world’s infor-

mation and make it universally accessible and useful.”25 Zuboff (2016) explains: “Most people

credit Google’s success to its advertising model. But the discoveries that led to Google’s rapid

rise in revenue and market capitalization are only incidentally related to advertising. Google’s

success derives from its ability to predict the future—specifically the future of behavior.” Ac-

cording to her, in the firm’s early years (since 1998), user information inherent in search logs

were not structurally stored. It took until the year 2001 that Google’s management realized

that this information could be used by sellers of other goods or services to identify consumers

who have a high probability of buying and to make consumers tailored contract offers, which

fit their individual preferences or consumption patterns.26

That Google only started to systematically store and exploit user information in 2001,

combined with our model of a data-driven entrant in traditional markets (Section 4), suggests

an explanation for why the firm’s search engine could overtake the hitherto incumbents, AOL

and Yahoo, in 2003 (measured by US market share, see Argenton and Prüfer (2012), p.

90). AOL and Yahoo had offered their users curated web entry points, where individual

staff members would try to catalogue and rank websites—a “traditional” business model. By

contrast, Google’s reliance on its algorithm, together with the automatic growth of its user

information database over time qualified it as a data-driven firm, as defined above. In such

a situation, Proposition 2 predicts the market tipping that actually occurred, not only in the

US market but also in Europe and beyond.

Argenton and Prüfer (2012) introduced the idea of search log data-based indirect network

effects as a crucial dimension of search engine competition in the (law and) economics lit-

25https://www.google.com/about/company/.
26Google is not the only data-driven firm to engage in fortune telling. Amazon was recently issued a patent

on a novel Method and System for Anticipatory Package Shipping (Patent number US008615473 (December 24,

2013), http://pdfpiw.uspto.gov/.piw?docid=08615473). This method contains that Amazon ships products

it expects customers to buy but have not bought yet, based on previous orders and other user information.
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erature. They document the tipping of the search-engine market since 2003 and construct

a simple model that explains a strong tendency towards monopolization, based on indirect

network effects. However, their static model cannot convincingly capture dynamic incentives

such as the incentives of a leading search engine to invest in R&D once it would have to share

its search-log data with competitors. The paper at hand improves on this weakness.

Chiou and Tucker (2014) recently reacted to Argenton and Prüfer (2012) and studied

empirically how the length of time that search engines retain their server logs affects the

apparent accuracy of subsequent searches, which could be interpreted as a measure of search

engine quality. For instance, one out of three changes in the data retention policy of a search

engine that Chiou and Tucker (2014) study was Yahoo’s decision to anonymize its personalized

user information after 90 days, in December 2008. They find no empirical evidence for a

negative effect from the reduction of data retention on the accuracy of search results. This

is an important finding and should be taken seriously by privacy regulators. However, it is

not surprising in the light of the model studied above: such anonymization, if done properly,

eliminates a search engine’s potential to identify or re-engineer a user’s identity.27 But the

change in Yahoo’s policy did not derogate the search engine’s aggregate amount of data on

users’ clicking behavior, which is the driver for indirect network effects. See the note at the

beginning of this section.

Burguet et al. (2015) set out to identify the main sources of market failure in the markets

that search engines intermediate. Complementary to our approach, they focus on the reliabil-

ity of the organic search results of a dominant search engine and take search engine quality as

given. They show that improvements in an alternative (non-strategic) search engine induce

the dominant search engine to improve search reliability, which benefits consumers: just as

in our framework, more competition (in our case, via data sharing) leads to more innovation

and higher quality of results. It also benefits consumers. Burguet et al. (2015) refrain from

studying dynamic effects, which we do in this paper and which explains market tipping.

27Chiou and Tucker (2014) complement empirical findings that “targeted advertising” techniques increase

purchases (Luo et al. 2014), prices (Mikians et al. 2012), and sellers’ profits (Shiller 2013). Bringing these

results together implies that search engines do not rely on information about individual users to provide

high-quality results but that their advertising profits, which drive innovation incentives, depend on personal-

ization. Dengler and Prüfer (2016) provide a microfoundation for anonymization choices of consumers with

high willingness-to-pay but limited strategic sophistication to hide their identities from a seller who makes use

of data-supported targeting techniques. de Cornière and de Nijs (2016) endogenize the amount of information

that users disclose to firms and study the incentives of an ad-supported platform to disclose information about

its users to advertisers prior to an auction. They find that disclosure can lead to higher prices even without

price discrimination (due to better targeting). Taylor (2004), Acquisti and Varian (2005), Calzolari and Pavan

(2006), Casadesus-Masanell and Hervas-Drane (2014), Campbell et al. (2015) and de Cornière (2016) offer

more entry points to this literature. A great survey is Acquisti et al. (2016).
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In Halaburda et al. (2016), two competing platforms repeatedly set prices. Consumers not

only value product quality but also benefit from direct network effects. If those are strong

enough, consumers may choose to buy a product with inferior quality from a “focal” platform.

Halaburda et al. (2016) complements our paper in several important aspects: the focus on

the pricing, not the quality decision; the reliance of direct, not data-driven indirect network

effects, and the normalization of production costs to zero, as opposed to positive costs of

innovation that are decreasing in a firm’s output.

Edelman (2015) underlines the opportunity of dominant firms on data-driven market to

use their market power to speed up monopolization, via tying their main product with other

services. He proposes“to open all ties,” that is, to allow competitors to wholly replace Google’s

offerings rather than to present consumers with parallel offerings from both Google and its

competitors (p.399). As the analysis above indicates, which does not assume any abusive

behavior of a dominant firm, ruling out certain conduct, such as tying, is unlikely to prevent

a dominant data-driven firm from completely tipping the market. The only proposal we are

aware of that may be able to achieve that is data sharing (see Section 5).28

This view is supported by Lianos and Motchenkova (2013), who show in a two-sided market

setting that, “similar to Argenton and Prüfer (2012), the desired reduction in the asymmetry

in the size of network effects can be achieved through the remedy to require search engines

to share their data bases and data on previous searches” (p.451). Moreover, Lianos and

Motchenkova (2013) show that a dominant monopoly platform results in higher prices and

underinvestment in quality-improving innovations by a search engine relative to the social

optimum. They also show that monopoly is sub-optimal in terms of harm to advertisers in

the form of excessive prices, harm to users in the form of reduction in quality of search results,

as well as harm to society in the form of lower innovation rates in the industry.

7.2. Connecting markets: digital maps and beyond

An epitome of connecting markets is Google’s entry and takeover of the market for road

maps.29 Until the 1990s, most road maps were printed on paper and served by a set of

oligopolistic incumbents that offered consumers horizontally or vertically differentiated ver-

sions of maps. By the nature of printed paper, those maps were static, in the sense that

28Some people may think that sharing of data with user information would allow competitors of a dominant

firm to reengineer a dominant firm’s algorithm (its key resource and tool of innovation), potentially aided by

machine learning. Others doubt this: “The Great Google Algorithm is not a set of ranking factors; rather,

it is a collection of protocols, operating systems, applications, databases, and occasional information retrieval

processes. [...] The Great Google Algorithm changes at an exponential rate” (http://www.seo-theory.com/

2011/01/07/why-you-cannot-reverse-engineer-googles-algorithm).
29As of May 2016, Google Maps had a market share above 90 percent, measured by

# Websites using given technology
Total # websites using any of the technologies

. See https://www.datanyze.com/market-share/maps/.
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consumers could not customize them for a specific purpose and recustomize them for another

purpose later. The digitization of maps lifted the latter restriction, such that users of online

maps or downloaded maps, for instance in cars’ GPS navigation systems, could zoom in and

out and ask for the “best” route to a certain destination. The unique feature distinguish-

ing Google from its competitors, when introducing Google Maps, was that a share of users’

queries that the firm received in its main search engine business was geography-related. As

such, Google received a huge stock of geographical information about user preferences and

characteristics as a by-product of its main search engine business. Today, many features in

Google Maps are fed by such data and not copyable (at the same quality level) by competitors

that lack such large amounts of user information.30 Zuboff (2016) comments: “Google recently

announced that its maps will not only provide the route you search but will also suggest a

destination.” Necessarily, such a product feature would be based on the amount of relevant

user information.

The case of tipping the road maps market exemplifies further markets that are likely to be

entered by data-driven firms with huge stocks of user information. The theory of connected

markets and the domino effect also suggest an explanation for the (at first sight) unfocused

strategy of Alphabet, Google’s parent company. In February 2016, The Economist (2016)

wondered: “Today Alphabet is a giant advertising company with the potential to become a

giant in other sectors as well—although exactly which ones, no one is yet sure. [...] The

firm has started to look like a conglomerate, with interests in areas such as cars, health care,

finance and space, as it tries to find the next big thing.” This may just be the behavior of

a firm in search of a suitable connected market, as described in Result 1.31 Ironically, it

30For instance, Google Maps contains information about restaurants and bars that lists “popular times” for

each day. “To determine popular times, Google uses data from users who have chosen to store their location

information on Google servers” (https://support.google.com/business/answer/6263531?hl=en). Providing

such information only adds value if the share of users “to store their location information” on a firm’s servers

is sufficiently large to be representative.
31Cars, originally a “traditional” industry, may be on the list of data-driven firms: “A high-end car, for

instance, has the digital horsepower of 20 personal computers and generates 25 gigabytes of data per hour of

driving. [...] Apple and Google are pressing carmakers to install the operating systems they have designed

for cars’ entertainment systems, which in practice will suck up all sorts of other data about the car and its

occupants” (The Economist, 2015). Similar to the road map industry, the “trick” in the car market may be not

to compete in the dimension of engineering and design quality, where incumbents’ experience is decades ahead.

Instead, attacking the traditional business model with a new business model, self-driving cars, looks like a

close application of the theory of connected markets: “The car processes both map and sensor information to

determine where it is in the world. [...] The software predicts what all the objects around us might do next.

It predicts that the cyclist will ride by and the pedestrian will cross the street” (https://www.google.com/

selfdrivingcar/how/). Google has the necessary geodata from its GoogleMaps and StreetView applications,

among others, which gives it a headstart in the dimension of relevant user information.
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is already implied by Google’s privacy policy: “We may combine personal information from

one service with information, including personal information, from other Google services [...]

[Y]our activity on other sites and apps may be associated with your personal information in

order to improve Google’s services and the ads delivered by Google.”32

8. Conclusion

The process of datafication is around us and progressing with staggering speed. From an

economic perspective, a key feature of this process is the growing importance of data-driven

indirect network effects, which combine the automatic demand-side creation of information

on users’ preferences and characteristics, as a by-product of using goods and services that are

connected to the internet, with a reduction in the marginal cost of innovation on the supply

side. Due to this combination, unlike direct network effects, two-sided market network effects,

or dynamic economies of scale, these data-driven indirect network effects cannot be easily

copied by competitors or be made irrelevant by the random arrival of the next revolutionary

innovation.33

The results of our model on market tipping and connected markets suggest a race. On

the one hand, technology firms with large stocks of existing data on user preferences and

characteristics will be looking to identify data-driven business models utilizing these data

stocks in other industries. On the other hand, traditional companies will be trying to increase

data-independent product quality in order to make it prohibitively costly for those data-

driven firms to enter their markets in the first place. Several firms—most clearly Google,

the self-proclaimed “data company”—have apparently understood this mechanism. But other

companies, notably some in manufacturing or car making, may have missed the message.34

Therefore, we applied the model and exemplified the domino effect by showing that Google’s

strategy to invest in many apparently unrelated markets can be rationalized by our model:

these markets are either already connected (by user information driving indirect network

effects in each of them) or the firm is trying to identify business models where user information

from existing markets can serve as a valuable input into traditional markets.35

32https://www.google.com/policies/privacy/
33See also footnote 3.
34For instance, during a recent motor show, the head of production at Mercedes said amidst discussions about

the future of the automobile industry, “we created the automobile, and we will not be a hardware provider to

somebody else,” according to The New York Times (2015a). Our model suggests a more cautious prediction.
35Google’s success suggests that the firm is good in connecting markets. In August 2016, Google was

reported to have seven products with more than one billion users each (http://fortune.com/2016/08/25/

facebook-google-tech-companies-billion-users/). Many of them benefit from access to a common pool

of user information.
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The policy proposal to require data sharing of anonymized user information among com-

petitors in data-driven markets coincides with major policy initiatives of the European Com-

mission. Beginning in May 2018, the General Data Protection Regulation will impose an

obligation on firms to enable individuals to take their personal data with them when they

quit using an online service.36 That is, differing from the proposal studied in Section 5, data

sharing will be implemented on the user side, not on the producer side, in Europe. A thorough

comparison of both types of mandatory data sharing is up for future research.

Similarly, the proposal studied in Section 5 is silent about organizational and institutional

issues. What type of data should be shared in which market, and precisely by whom? At

which intervals? Should competitors be asked to share data bilaterally, in a network of dyads?

Or should there be a third party, for instance a centralized public authority that collects and

distributes the data from and among competitors? Or should such an authority be a private

industry association that is run by and on behalf competitors? These are just some of the

important question, on top of a battery of legal issues, that have to be answered before policy

makers could seriously consider to take action.

In more general terms, this is only the second paper, after Argenton and Prüfer (2012),

that has brought the idea of data-driven indirect network effects as common denominator of

data-driven markets, to the attention of academic economists. As such, it offers many avenues

for future research, both theoretically and empirically. On the empirical side, the fundamental

mechanism of treating demand side-generated user information as input into the supply side-

run innovation process must be studied and verified in various industries. On the theoretical

side, the nexus of innovation and personalization, that is, the use of past user data to improve

the service not only in general but in particular for the user whose interaction generated the

data, is an important topic for future research.

36Regulation (EU) 2016/679 of the European Parliament and of the European Council of 27 April 2016 on

the protection of natural persons with regard to the processing of personal data and on the free movement of

such data (http://ec.europa.eu/justice/data-protection/).
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A. Appendix: Proofs

A.1. Derivations for Period T

The optimal interior xT in (3) follows directly from the first order condition. The main task

is to derive the boundaries of the range of interior investments. This range is limited by the

following conditions: First, −1 ≤ ∆T = ∆T−1 − xT ≤ 1. Second, V T
2 ≥ 0 and third xT ≥ 0.

For α ≥ 1/2, the marginal costs of investment at ∆T−1 = 1 are higher than the marginal

revenue and therefore zero investment is optimal already for some ∆t−1 ≤ 1. Clearly, V T
2 ≥ 0

and ∆T ≤ 1 in this case and the binding upper bound on ∆T−1 is derived from xT ≥ 0 which

can then be rewritten as ∆T−1 ≤ 1/α − 1. For α < 1/2, there are some ∆T−1 > 1 such that

investment is still profitable and the optimal investment at these ∆T−1 > 1 is 1/2γ−α/γ > 0

(as D2(∆T−1) = 0). Profits for firm 2 are in this case 1/2−∆T−1/2+1/(8γ)−α/(2γ)+α2/(2γ)

and therefore V T
2 ≥ 0 if ∆T−1 ≤ 1 + (1 − 4α(1 − α))/(4γ). Note that this condition is also

sufficient for ∆T ≤ 1 and we obtain the expression for Uα from these considerations.

The condition ∆T ≥ −1 can be rewritten (using the optimal interior investment) as

∆T−1 ≥ −1+1/2γ−(1−D2(∆T−1)α/γ. Depending on whether ∆T−1 is below or above 1, the

condition is ∆T−1 ≥ −1 + 1/(2γ + α) or ∆T−1 ≥ −1 + (1− 2α)/(2γ). As, by the assumption

γ > 1/4, the former bound is below 1, ∆T−1 ≥ −1 + 1/(2γ + α) is the relevant lower bound.

The profits in (4) and (5) follow then simply from plugging (3) into the profit functions.

A.2. Existence of a Stationary Equilibrium that is the Limit of Subgame-

perfect Nash Equilibria

We will show that there exists a stationary Markov equilibrium that is the limit of subgame-

perfect Nash equilibria in games with finite time horizon as the time horizon T approaches

infinity. Note that a Markov equilibrium can essentially be denoted by the value function. We

will therefore concentrate on those. For every time horizon T take a subgame perfect Nash

equilibrium and denote the first period value function of player i as V 1,T
i . Note that player

i’s value function is bounded from below by 0 and bounded from above by 1/(1− δ) (i.e. the

revenue of capturing the whole market for all times without investing anything). By Lemma

1, the value functions are monotone. Take an increasing sequence of T s and the corresponding

sequence of value functions of firm 1 (V 1,T
1 )T .

We will show that this sequence (V 1,T
1 )T has a pointwise converging subsequence. To do so

we consider the metric space of increasing functions mapping into [0, 1/(1−δ)]. First consider

the restrictions of the functions in (V 1,T
1 )T to the rational domain Q. As Q is countable, the

diagonal theorem, see for example appendix A14 in Billingsley (2008), establishes that there

exists a subsequence of (V 1,T
1 )T that converges pointwise on Q. With a slight abuse of notation,
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let (V 1,T
1 )T be this subsequence in the remainder and let Ṽ be the pointwise limit. Note that

Ṽ is monotone (on Q) because all V 1,T
1 are monotone. Now consider again the original domain

R and let D be the set of points on which (V 1,T
1 )T does not converge. For any d ∈ D, we

claim that limq∈Q↗d Ṽ (q) < limq∈Q↘d Ṽ (q). By monotonicity of Ṽ on Q, the opposite strict

inequality is impossible. If, however, limq∈Q↗d Ṽ (q) = limq∈Q↘d Ṽ (q), then (V 1,T
1 (d))T must

converge to limq∈Q↘d Ṽ (q), contradicting that d ∈ D. To make the latter point clear, suppose

to the contrary that there is an ε > 0 such that for any T ′ there exists a T > T ′ such that

|V 1,T
1 (d)− limq∈Q↘d Ṽ (q)| > ε. For concreteness, let us assume that we can find such a T > T ′

such that V 1,T
1 (d)− limq∈Q↘d Ṽ (q) > ε (the opposite case analogous). Take a q′ > d such that

Ṽ (q′) < limq∈Q↘d Ṽ (q) + ε/2. As (V 1,T
1 ) converges point-wise, there exists a T ′′ such that

Ṽ (q′) + ε/2 > V 1,T
1 (q′) for all T > T ′′. Hence, V 1,T

1 (q′) < limq∈Q↘d Ṽ (q) + ε for T > T ′′ but

this (together with the monotonicity of V 1,T
1 ) contradicts that V 1,T

1 (d) − limq∈Q↘d Ṽ (q) > ε

for some arbitrarily large T . This establishes that limq∈Q↗d Ṽ (q) < limq∈Q↘d Ṽ (q) for all

d ∈ D.

As Ṽ is monotone on Q and Q is dense in R, the condition limq∈Q↗d Ṽ (q) < limq∈Q↘d Ṽ (q)

can hold at only countably many points d. Hence, D has a countable number of elements.

But then the diagonal theorem can be applied again to show that there exists a subsequence

of (V 1,T
1 )T that converges point-wise on R. For this subsequence of T , take the corresponding

subsequence of (V 1,T
2 )T and, using the same steps, we can get a subsequence such that also

(V 1,T
2 )T converges point-wise on R. Let V 1,∗

1 and V 1,∗
2 be these limit value functions. Using the

second period value functions corresponding to the elements of the sequence of value functions

converging to (V 1,∗
1 , V 1,∗

2 ) and applying the same steps again gives us a subsequence of value

functions (this time for the even periods where firm 2 is investing) converging point-wise. The

resulting (V 1,∗
1 , V 1,∗

2 , V 2,∗
1 , V 2,∗

2 ) is a stationary Markov equilibrium (if the Bellman equation

was not satisfied for one player at some ∆, it would also be violated for this player in a

subgame-perfect Nash equilibrium for T sufficiently high).

A.3. Proof of Lemma 1

We know from Section 3.1 that Lemma 1 is true in t = T . We proceed by induction. Assuming

that the statement is true for t + 1, we will now show that it is true for t. For concreteness,

say t is odd, i.e. firm 1 can invest. We consider the last statement of the lemma first: Take

two values of ∆t−1; a high one, ∆h, and a low one, ∆l. Denote firm 1’s optimal investment by

x(∆t−1). Now suppose – contrary to the lemma – that ∆h
t = ∆h +x(∆h) < ∆l +x(∆l) = ∆l

t.

We will show that this leads to a contradiction. Optimality of the investment xh = x(∆h)

requires that investing xh leads to a higher value than investing ∆l+xl−∆h when the quality
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difference is ∆h:

D1(∆h + xh)− c(xh, D1(∆h)) + δV t+1
1 (∆h + xh)

≥ D1(∆l + xl)− c(∆l + xl −∆h, D1(∆h)) + δV t+1
1 (∆l + xl)

⇔ D1(∆h + xh)−D1(∆l + xl) + δV t+1
1 (∆h + xh)− δV t+1

1 (∆l + xl)

≥ c(xh, D1(∆h))− c(∆l + xl −∆h, D1(∆h)).

Similarly, investing xl must lead to a higher value than investing xh + ∆h −∆l if the quality

difference is ∆l:

D1(∆l + xl)− c(xl, D1(∆l)) + δV t+1
1 (∆l + xl)

≥ D1(∆h + xh)− c(∆h + xh −∆l, D1(∆l)) + δV t+1
1 (∆h + xh)

⇔ D1(∆h + xh)−D1(∆l + xl) + δV t+1
1 (∆h + xh)− δV t+1

1 (∆l + xl)

≤ c(∆h + xh −∆l, D1(∆l))− c(xl, D1(∆l)).

Taking these two optimality conditions together we obtain

c(xl, D1(∆l))− c(∆h + xh −∆l, D1(∆l)) ≤ c(∆l + xl −∆h, D1(∆h))− c(xh, D1(∆h)). (A.1)

We will show that this last inequality cannot hold. Note that ∆h > ∆l implies that xh <

∆h + xh −∆l. Therefore, the strict convexity of c in x implies that

c(xl, D1(∆l))− c(∆h + xh −∆l, D1(∆l)) > c(∆l + xl −∆h, D1(∆l))− c(xh, D1(∆l))

as the difference in x is the same on both sides of the inequality but the cost difference is

evaluated at a lower x on the right hand side. As D1 is strictly increasing in ∆ and ∆h > ∆l,

the assumption cxD1 < 0 implies that the right hand side of the previous inequality is lower

when evaluated at D1(∆h) instead of D1(∆l) (this is the point where we use ∆l+xl > ∆h−xh

which implies ∆l + xl −∆h > xh), i.e.

c(xl, D1(∆l))− c(∆h + xh −∆l, D1(∆l)) > c(∆l + xl −∆h, D1(∆l))− c(xh, D1(∆l))

> c(∆l + xl −∆h, D1(∆h))− c(xh, D1(∆h)).

But this contradicts (A.1). We can therefore conclude that ∆t is increasing in ∆t−1.

To show that V t
1 (∆t−1) is increasing in ∆t−1 consider again ∆h > ∆l and let xl be the

optimal choice under ∆l:

V t
1 (∆h) = max

x
D1(∆h + x)− c(x,D1(∆h)) + δV t+1

1 (∆h + x)

≥ D1(∆h + xl)− c(xl, D1(∆h)) + δV t+1
1 (∆h + xl)

≥ D1(∆l + xl)− c(xl, D1(∆l)) + δV t+1
1 (∆l + xl)

= V t
1 (∆l)
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where the inequality follows from the fact that D1 is increasing and c is decreasing in D1 as

well as the induction assumption that V t+1
1 is increasing.

To show that V t
2 (∆t−1) is decreasing, recall that ∆t = ∆t−1 + x(∆t−1) is increasing in

∆t−1 and therefore

V t
2 (∆h) = D2(∆h + x(∆h)) + δV t+1

2 (∆h + x(∆h))

≤ D2(∆l + x(∆l)) + δV t+1
2 (∆l + x(∆l)) = V t

2 (∆l)

since D2 and V t+1
2 are decreasing.

If t is even, the proof is analogous.

A.4. Proof of Lemma 2

Take some ∆t as given. Assume ∆t′ ≥ 1 for some t′ > t. Then ∆t′ is also above 1 for all

∆′t > ∆t. This follows directly from Lemma 1 as a higher ∆t leads to a higher ∆t+1, which

leads in turn to a higher ∆t+2. . . which leads to a higher ∆t′ .

This implies the following: Whenever for a given ∆t we have ∆t′ ≥ 1, for some t′ > t, then

the same is true for all higher ∆t. Clearly, we can obtain the same result for −1: Whenever

for a given ∆t we have ∆t′ ≤ −1 for some t′ > t, then the same is true for all lower ∆t. These

two statements imply the corollary.

A.5. Proof of Lemma 3

Lemma 3 is true for period T ; see equations (4) and (5). We will argue via induction that it

is true for any t. From the definition of It and lemma 1, it is clear that any ∆t in the interior

of It leads in equilibrium to a ∆t+1 in the interior of It+1. Then the first-order conditions

of the investing firm, (7) or (8) respectively, implies that the optimal investment is linear in

∆t−1 as D is linear, c is quadratic and V t+1
i is by the induction hypothesis quadratic.

Consider an odd t where firm 1 invests. Then using the implicit function theorem on (7)

yields

d xt

d∆t−1
=
α/2 + δV t+1

1
′′

γ − δV t+1
1
′′ > 0 (A.2)

where the inequality follows because V t+1
i is convex by the induction hypothesis and the

denominator is positive by the second-order condition of the maximization problem. Note
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that x is linear as V t+1
i is quadratic by the induction hypothesis.37 Similarly, if t is even then

d xt

d∆t−1
=
−α/2− δV t+1

2
′′

γ − δV t+1
2
′′ < 0. (A.3)

Now we want to derive V t
1
′′

in odd t. By the envelope theorem,

V t
1
′
(∆t−1) =

1

2
+ αxt

1

2
+ δV t+1

1
′
(∆t−1 + xt)

which after differentiating yields

V t
1
′′

= α
dxt

d∆t−1

1

2
+ δ

(
1 +

d xt

d∆t−1

)
V t+1

1
′′
. (A.4)

We conclude that V t
1
′′ ≥ 0 as V t+1

1
′′ ≥ 0 by the induction hypothesis.

Furthermore, V t
1 is quadratic as xt is linear and V t+1

1 is quadratic. Next we consider V t
2
′′

for odd t:

V t
2
′
(∆t−1) = −1

2
+ δ

(
1 +

d xt

d∆t−1

)
V t+1

2
′
(∆t−1 + xt)

V t
2
′′

= δ

(
1 +

d xt

d∆t−1

)2

V t+1
2
′′

(A.5)

where the last step utilizes that xt is linear (hence its second derivative is zero). We obtain

that V t
2
′′ ≥ 0 as V t+1

2
′′ ≥ 0 by the induction hypothesis. Also V t

2 is quadratic as xt is linear

and V t+1
2 is quadratic. The result for even t is derived analogously.

A.6. Proof of Proposition 1

Note that Proposition 1 holds for t = T by the definition of It with t = T .38 For a given

equilibrium in the game with length T , consider the function that assigns to each ∆t the

resulting ∆t+1, e.g. for even t we have ∆t+2(∆t) = ∆t + xt+1(∆t)− xt+2(∆t + xt+1(∆t)). By

Lemma 3, this function is linear on the interior of It (if both xt+1 and xt+2 are strictly greater

than 0). Using the first-order conditions, it is straightforward to calculate that the slope of

37Here one might consider the possibility of a corner solution xt = 0 if marginal costs, i.e. α, are excessively

high. If we assume α ≤ 1/2 this is impossible (recall that V t+1
1 is increasing). For large T =∞, the assumption

α < 1 would be enough to rule this out: Suppose it xt = 0: Then ∆t−1 < 0 as otherwise α < 1 implies that

firm 1 wants to invest (recall that V t+1
1 is increasing). This implies by α < 1 that firm 2 will invest a positive

amount in t + 1 and ∆t+1 < ∆t−1. By the convexity of V t+1
1 , firm 1 will again find it optimal to invest 0 in

t+ 2. Repeating the argument shows that ∆ will diverge to −1 which contradicts that ∆t ∈ It.
38In fact, we could use the analysis of section 3.1 to give the tighter (though somewhat messy) bound

[Uα + (2γ − 1 + α)/(2γ + α)]/[(1 + α/(2γ))dT−te/2] in the proposition. The proof for this tighter bound is the

same.
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∆t+2(∆t) is (for concreteness, we let t be odd though this has no impact on the final result):

d∆t+2

d∆t
=
d
{

∆t+1 + xt+2(∆t+1)
}

d∆t
=
d
{

∆t − xt+1(∆t) + xt+2
(
∆t − xt+1(∆t)

)}
d∆t

= 1 +
α/2 + δV t

2
′′

γ − δV t
2
′′ +

α/2 + δV t+1
1
′′

γ − δV t+1
1
′′

(
1 +

α/2 + δV t
2
′′

γ − δV t
2
′′

)

=

(
1 +

α/2 + δV t+1
1
′′

γ − δV t+1
1
′′

)(
1 +

α/2 + δV t
2
′′

γ − δV t
2
′′

)
> (1 + α/(2γ))2 > 1

If either xt+1 or xt+2 is zero (say for concreteness xt+2 = 0), then the slope is only

s = 1 +
α/2 + δV t+1

i
′′

γ − δV t+1
i
′′ > 1 + α/(2γ) > 1.

By α < 1, it is impossible that both xt+1 and xt+2 are zero at any quality difference

between -1 and 1. From the definition of It, it follows that the length of It can be at most

length(It+2)/s. The condition in the proposition iterates this reasoning, e.g. the length of It

can be at most length(It+4)/s2 etc. Since 1 + α/(2γ) > 1, the maximal length of I0 shrinks

to zero as T becomes large.

A.7. Proof of Lemma 4

As the proof of Proposition 1 shows, the upper (lower) bound of It will be strictly below

1 (above -1) for t < T − 1. This implies that ∆t is strictly above (below) It if ∆t = 1 (if

∆t = −1). By the definition of It and the monotonicity derived in Lemma 1, it follows that

∆t′ has again to be 1 (respectively -1) in some later period t′ > t. The monotonicity in Lemma

1 in fact implies that ∆t′ will be above It
′

in all t′ > t and therefore firm j cannot have full

demand in any following period.

For the infinitely repeated game, Vi will no longer depend on t as the equilibrium is

stantionary. For concreteness, let firm i be firm 1 and assume that firm 1 has full demand in

period t but not in t−2 (i.e. t is the first period in which firm 1 has full demand). Let t be odd

(this is without loss of generality: if firm 1 has full demand in an even period, it will obviously

also have full demand in the directly following odd period). From Lemma 1 it follows that

∆t+1 ≥ ∆t−1 is implied by ∆t−2 < ∆t. This implies, by Lemma 1, that ∆t+2 ≥ ∆t. As

firm 1 had full demand in t, firm 1 will have full demand again in t + 2. This argument can

now be iterated to yield the result (i.e. ∆t+2 ≥ ∆t implies ∆t+4 ≥ ∆t+2 etc.). Note that

this iteration also shows that ∆t+2n+1 is increasing in n ∈ N. As we consider a stationary

equilibrium, nothing depends on time periods per se and the result therefore also holds if firm

1 has full demand in the initial period. An analogous argument works for firm 2.
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A.8. Proof of Lemma 5

Let the market be weakly tipping and assume for concreteness that firm 1 obtains full demand

in some period t′′ and that T is even. Lemma 4 (i) (used inductively) implies that firm 1 will

also have full demand in period T − 1. By α ≥ 1/2, marginal costs of firm 2 in period T are

greater than 1/2 for every investment x > 0 while marginal revenue is – at most – −D′2 = 1/2.

Hence, zero investment is optimal for firm 2 in period T and firm 1 will have full demand

also in period T . Using t′ = T − 1 in the definition of absolutely tipping market gives the

result.

A.9. Proof of Proposition 2

In the interior of It, the first-order condition in even periods is

1/2− γ′x− α′/2− δV t+1
2
′
(∆t−1 − x) = 0.

Note that this always yields a positive optimal investment, by α′ < 1 and V t+1
2
′
< 0. In

particular, (1 − α′)/(2γ′) is a lower bound for this investment. Furthermore – as V t+1
2

is quadratic in the interior of It – the optimal investment is linear in ∆t−1 with slope

−δV t+1
2
′′
/(γ′ + δV t+1

2
′
) ≤ 0.

In odd periods, the slope of the optimal investment is as given in (A.2) unless the invest-

ment is zero, which is in principle possible if α > 1/2 and ∆t−1 sufficiently negative. We will

now show that the optimal investment of firm 1 has to be strictly positive in the interior of

It (as T → ∞) in some periods. Recall that firm 2’s investment in even periods is bounded

from below by (1− α′)/(2γ′). If firm 1 invested zero in 4γ′/(1− α′) consecutive odd periods,

then clearly ∆ would decrease by more than 2 and, therefore, firm 2 would have captured the

whole market, which contradicts the definition of It.

Hence, at least in one period out of every time window of 8γ′/(1−α′) periods, firm 1 will

have an interior investment. Let t+ 1 be such a period with an interior investment by firm 1.

Then,

d∆t+2

d∆t
=
d
{

∆t+1 − xt+2(∆t+1)
}

d∆t
=
d
{

∆t + xt+1(∆t)− xt+2
(
∆t + xt+1(∆t)

)}
d∆t

= 1 +
α/2 + δV t

1
′′

γ − δV t
1
′′ +

δV t+1
2
′′

γ′ − δV t+1
2
′′

(
1 +

α/2 + δV t
1
′′

γ − δV t
1
′′

)

=

(
1 +

α/2 + δV t+1
1
′′

γ − δV t+1
1
′′

)(
1 +

δV t
2
′′

γ′ − δV t
2
′′

)
> 1 + α/(2γ) > 1.

If firm 1 chooses xt+1 = 0, then:

d∆t+2

d∆t
=

d
{

∆t + xt+1(∆t)− xt+2
(
∆t + xt+1(∆t)

)}
d∆t

= 1 +
δV t+1

2
′′

γ′ − δV t+1
2
′′ ≥ 1.
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The effect of increasing ∆0 by ε > 0 will therefore be greater than 2 in 2γ/α ∗ 8γ′/(1−α′)

periods which shows that ∆0 + ε cannot be in I0 if ∆0 is. Since ε > 0 is arbitrary, this shows

that the length of the interval I0 is zero if T is sufficiently large. The other results follow

immediately from there.

A.10. Proof of Corollary 2

Let ∆̄0 be the infimum of the intiial quality differences for which the market tips in favor of

firm 1 in case of entry. Part (i) is obviously true as firm 1 will never enter if F > F̄ = 1/(1−δ).

(ii) Recall that V 1
1 is increasing in ∆0. As firm 1 enters only if F ≤ V 1

1 (∆0), this implies that

firm 1 enters only if ∆0 is sufficiently large. For F ∈ [V 1
1 (∆̄0, F̄ ], firm 1 enters only if it takes

over the market eventually, i.e. taking F̂ = V 1
1 (∆̄0 yields (ii). Part (iii), entry without tipping,

occurs if ∆0 < ∆̄0 but nevertheless entry allows a positive profit. For example, assume α′

and γ′ are very low, say 0 for concreteness, (and α and γ are not low), then firm 2 will react

to entry by investing in period 2 sufficiently to force firm 1 from the market. If F = 0 and

∆0 > −1, entry will nevertheless be profitable for firm 1 as positive profits are made in period

1.

A.11. Proof of Lemma 6

By Proposition 2, the length of I0 is zero. That is, it contains at most a single point. Conse-

quently, there is a ∆̄0 such that the market tips in favor of firm 1 (2) if ∆0 > ∆̄0 (if ∆ < ∆̄0).

By the stationarity of the equilibrium, ∆̄0 = ∆̄t for all t, where ∆̄t is the quality difference

such that the market will eventually tip in favor of firm 1 if the quality difference is above ∆̄t

after period t.

Now we will show that ∆2 > ∆0 implies that ∆0 > ∆̄0. To do so we show that ∆ is

increasing over time if ∆0 > ∆̄0 and decreasing if ∆0 < ∆̄0. To see this, let ∆0 > ∆̄0 or,

more generally, ∆t > ∆̄t. If ∆t+2 < ∆t, then—by the monotonicity shown in Lemma 1—

∆̃t+2 < ∆t+2 < ∆t for all ∆̃t < ∆t. In a stationary equilibrium, this implies that ∆t+2n

can never be above ∆t. If ∆t < 1, this would, however, contradict ∆t > ∆̄t. Hence, for all

∆t ∈ (∆̄t, 1), we obtain that ∆t+2 > ∆t. By monotonicity, we then get ∆t+2 ≥ 1 for all

∆t ≥ 1. Similarly, we can obtain the result that, for all ∆t ∈ (−1, ∆̄t), we have ∆t+2 < ∆t.

By monotonicity, we then get ∆t+2 ≤ −1 for all ∆t ≤ −1.

Taking this together we can have market entry and ∆2 > ∆0 only if ∆0 > ∆̄0.

A.12. Proof of Lemma 7

The Lemma is true for t = T . Using (backwards) induction and the first-order conditions (7)

and (8), it is straightforward to derive the result for t < T .
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Let us be a bit more precise here: In period T , V T
1
′

= 1/2 on IT . In other periods,

V t
1
′
= 1/2 + δV t+1

1
′

on It, which implies by induction that V t
1
′
=
∑T−t

i=0 δ
i/2 on It. Similarly,

V t
2
′
= −

∑T−t
i=0 δ

i/2 on It. Using the first-order conditions (7) and (8) yields that

xt =
1/2 + δ|V t+1

i
′|

γ
=

1− δT−t+1

2γ(1− δ)

on It.

A.13. Proof of Lemma 1 with decaying quality

First consider Lemma 1.(ii). Take two values of ∆t−1; a high one, ∆h, and a low one, ∆l.

Denote firm 1’s optimal investment by x(∆t−1). Now suppose – contrary to the Lemma –

that ∆h
t = µ∆h+x(∆h) < µ∆l+x(∆l) = ∆l

t. We will show that this leads to a contradiction.

Optimality of the investment, xh = x(∆h), requires that investing xh leads to a higher value

than investing µ∆l + xl − µ∆h when the quality difference is ∆h:

D1(µ∆h + xh)− c(xh, D1(∆h)) + δV t+1
1 (µ∆h + xh)

≥ D1(µ∆l + xl)− c(µ∆l + xl − µ∆h, D1(∆h)) + δV t+1
1 (µ∆l + xl)

⇔ D1(µ∆h + xh)−D1(µ∆l + xl) + δV t+1
1 (µ∆h + xh)− δV t+1

1 (µ∆l + xl)

≥ c(xh, D1(∆h))− c(µ∆l + xl − µ∆h, D1(∆h)).

Similarly, investing xl must lead to a higher value than investing xh+µ∆h−µ∆l if the quality

difference is ∆l:

D1(µ∆l + xl)− c(xl, D1(∆l)) + δV t+1
1 (µ∆l + xl)

≥ D1(µ∆h + xh)− c(µ∆h + xh − µ∆l, D1(∆l)) + δV t+1
1 (µ∆h + xh)

⇔ D1(µ∆h + xh)−D1(µ∆l + xl) + δV t+1
1 (µ∆h + xh)− δV t+1

1 (µ∆l + xl)

≤ c(µ∆h + xh − µ∆l, D1(∆l))− c(xl, D1(∆l)).

Taking these two optimality conditions together, we obtain:

c(xl, D1(∆l))−c(µ∆h+xh−µ∆l, D1(∆l)) ≤ c(µ∆l+xl−µ∆h, D1(∆h))−c(xh, D1(∆h)). (A.6)

We will show that this last inequality cannot hold. Note that ∆h > ∆l implies that

xh < µ∆h + xh − µ∆l. Therefore, the strict convexity of c in x implies that:

c(xl, D1(∆l))− c(µ∆h + xh − µ∆l, D1(∆l)) > c(µ∆l + xl − µ∆h, D1(∆l))− c(xh, D1(∆l))

because the difference in x is the same on both sides of the inequality but the cost difference is

evaluated at a lower x on the right-hand side. As D1 is strictly increasing in ∆ and ∆h > ∆l,
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the assumption cxD1 < 0 implies that the right-hand side of the previous inequality is lower

when evaluated at D1(∆h) instead of D1(∆l) (for this, we use µ∆l + xl > µ∆h − xh, which

implies µ∆l + xl − µ∆h > xh). It follows:

c(xl, D1(∆l))− c(µ∆h + xh − µ∆l, D1(∆l)) > c(µ∆l + xl − µ∆h, D1(∆l))− c(xh, D1(∆l))

> c(µ∆l + xl − µ∆h, D1(∆h))− c(xh, D1(∆h)).

But this contradicts (A.6). We can therefore conclude that ∆t is increasing in ∆t−1.

To prove the robustness of Lemma 1.(i), we have to show that V t
1 (∆t−1) is increasing in

∆t−1. Consider again ∆h > ∆l and let xl be the optimal choice under ∆l:

V t
1 (∆h) = max

x
D1(µ∆h + x)− c(x,D1(∆h)) + δV t+1

1 (µ∆h + x)

≥ D1(µ∆h + xl)− c(xl, D1(∆h)) + δV t+1
1 (µ∆h + xl)

≥ D1(µ∆l + xl)− c(xl, D1(∆l)) + δV t+1
1 (µ∆l + xl)

= V t
1 (∆l),

where the inequality follows from the fact that D1 is increasing and c is decreasing in D1 as

well as the induction assumption that V t+1
1 is increasing.

To show that V t
2 (∆t−1) is decreasing, recall that ∆t = µ∆t−1 + x(∆t−1) is increasing in

∆t−1 and therefore

V t
2 (∆h) = D2(µ∆h + x(∆h)) + δV t+1

2 (µ∆h + x(∆h))

≤ D2(µ∆l + x(∆l)) + δV t+1
2 (µ∆l + x(∆l)) = V t

2 (∆l)

because D2 and V t+1
2 are decreasing.

If t is even, the proof is analogous.

A.14. Proof of Proposition 3

The proof of lemma 3 goes through. However, the slope of the investment decision in the

interior of It if firm 1 invests is now

d xt

d∆t−1
=
α/2 + µδV t+1

1
′′

γ − δV t+1
1
′′

and if firm 2 invests we obtain

d xt

d∆t−1
=
−α/2− µδV t+1

2
′′

γ − δV t+1
2
′′ .

Following the proof of Proposition 1, we now have to analyze (concentrating on odd t for

concreteness) ∆t+1(∆t) = µ2∆t−µxt+1(∆t)+xt+2(µ∆t−xt+1(∆t)). This yields (if both xt+1

and xt+2 are strictly positive)

d∆t+2

d∆t
=

(
µ+

α/2 + µδV t+1
1
′′

γ − δV t+1
1
′′

)(
µ+

α/2 + µδV t
2
′′

γ − δV t
2
′′

)
> (µ+ α/(2γ))2 > µ(µ+ α/(2γ)).
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If only one of the two investments is positive (say xt+2 = 0) we obtain the following slope

s = µ2 + µ
α/2 + µδV t

2
′′

γ − δV t
2
′′ > µ(µ+ α/(2γ)).

If µ(µ+ α/(2γ)) > 1, we can therefore bound the slope ∆t+2 as a function of ∆t from below

by a constant strictly higher than 1. The maximal length of I0 will therefore shrink to zero

at exponential speed as T →∞ if µ(µ+ α/(2γ)) > 1.

A.15. Proof of Proposition 4

The proof is done for ∆̄ while the proof for ∆ works analogous. First, we show that for

sufficiently high ∆ investments by both SE are zero. Note that for ∆ > 1 the marginal costs

of firm 2 are strictly higher than α. Now suppose that ∆ > 1 + 1/(α−αδ). It is then optimal

for firm 2 not to invest: Suppose otherwise, i.e. suppose there is a ∆′ > 1 + 1/(α − αδ)

such that firm 2 invest in equilibrium. This implies that firm 2 must have positive demand

eventually in this equilibrium, say firm 2 will have positive demand (for the first time) in t′

periods. Firm 2’s revenue is then bounded from above by δt
′
/(1 − δ). Firm 2’s investment

costs (until period t′, i.e. until ∆ < 1) are strictly bounded from below by δt
′
α/(α − αδ),

which equals the upper bound on revenues. Hence, firm 2’s value would be negative although

it could secure a zero value by not investing ever. This contradicts that there is an equilibrium

in which firm 2 invests a positive amount at some ∆ > 1 + 1/(α−αδ). Given that firm 1 has

full demand and firm 2 does not invest for ∆ > 1 + 1/(α− αδ), firm 1 will also not invest for

∆ > 1 + 1/(α − αδ). This proves that every ∆ > 1 + 1/(α − αδ) is a steady state in every

Markov equilibrium.

Let D̄ be the set of all ∆ that are (i) steady states such that firm 2 invests zero in t + 2

if ∆t+1 = ∆, (ii) firm 1 has full demand, i.e. ∆ ≥ 1 and (iii) the steady states are stable in

the following sense: There exists an ε > 0 such that ∆t+2 ≥ ∆t if ∆t ∈ (∆− ε,∆) if t is even.

By the previous paragraph, this set is non-empty and by (ii) it is bounded from below by 1.

Therefore, D̄ has an infimum. Let ∆′ be this infimum of D̄. We will now show that ∆′ is a

stable steady state.

Suppose otherwise, i.e. suppose we can find ∆′′ < ∆′ arbitrarily close to ∆′ such that

∆t+2 < ∆′′ if ∆t = ∆′′ and t is even. First, note that V1(∆) = 1/(1 − δ) for ∆ > ∆′ by

the definition of D̄. Given that ∆t+2 < ∆′′, firm 2 must invest in t + 2 more than firm 1

does in t+ 1. Firm 2 only invests a positive amount if it can enjoy some positive demand in

a future period. As firm 2’s marginal costs of investment are at least α, the future revenue

stream of firm 2 must be at least αxt+2
2 and, therefore, firm 1’s value at ∆′′ has to be less

than 1/(1 − δ) − δαxt+2
2 . Now distinguish two cases. First suppose ∆′ > 1. Then take

∆′′ > 1 and note that firm 2 will in period t+ 2 expect to make future revenues worth a net
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present value of at least α(∆′′ − 1) (as otherwise xt+2
2 = 0 would be optimal) and therefore

V t+1
1 (∆′′) < 1/(1 − δ) − δα(∆′′ − 1). By investing ∆′ − ∆′′ + ε in period t for some ε > 0

arbitrarily small, firm 1 would guarantee itself 1/(1− δ). For ∆′′ sufficiently close to ∆′ and

ε sufficiently small, this gives 1 a higher value than 1/(1− δ)− δα(∆′′− 1), which contradicts

the candidate equilibrium.

Hence, we can move to the second case ∆′ = 1. Note that firm 1 can, for ∆t = ∆′′,

guarantee itself 1/(1− δ)− c(1−∆′′+ ε,D1(∆′′)) = 1/(1− δ)−γ(1−∆′′+ ε)2/2−α(1−∆′′+

ε)(1 − ∆′′)/2 for some ε > 0 arbitrarily small by investing 1 − ∆′′ + ε in t + 1. By sticking

to its equilibrium investment, firm 1 will get at most 1/(1 − δ) − δ(1 −∆′′)/2 as firm 2 will

have demand of at least (1 −∆′′)/2 in period t + 2. But for ∆′′ sufficiently close to ∆′ = 1

and ε sufficiently small, γ(1 −∆′′ + ε)2/2 + α(1 −∆′′ + ε)(1 −∆′′)/2 < δ(1 −∆′′)/2, which

contradicts the optimality of firm 1’s equilibrium investment. Hence, ∆′ is stable.

Last we show that ∆′ = 1. Suppose otherwise, i.e. suppose ∆′ > 1. As ∆′ is stable

and above 1, firm 2’s investment when facing quality difference ∆′ will pay off only in the

period t + 2 in which it is made. By α ≥ 1/2, marginal costs of investing are then higher

than marginal revenue even at zero investment. Hence, investing is unprofitable for firm 2

when facing quality difference ∆′. By stability of ∆′, the same is true for all ∆ ∈ (∆′− ε,∆′)

for ε > 0 sufficiently small. Given that firm 2 invests zero when facing ∆ ∈ (∆′ − ε,∆′) and

given that ∆′ > 1, it is optimal for firm 1 to invest zero at ∆ ∈ (∆′ − ε,∆′) for ε sufficiently

small. Hence, these quality differences are stable steady states. But this means that all

∆ ∈ (∆′− ε,∆′) are in D̄, which contradicts the definition of ∆′ as the infimum of D̄. Hence,

∆′ = 1.

To see that ∆′ = 1 is a strictly stable steady state, note that the arguments two paragraphs

above show a profitable deviation in case in case that ∆′′ < 1 arbitrarily close to 1 exist such

that ∆t = ∆′′ imply ∆t+1 = ∆′′.

A.16. Proof of Lemma 8

Consider the completely myopic case: δ = 0 and the firms invest as in the one-shot game.

Investments will then be given by (3) and will be denoted by x∗i (∆) for the remainder of this

proof. Consider one investment by firm 1 and one investment by firm 2. If neither grabs the

whole market, that is, if investments are interior, then the change in ∆ is:

d(∆) ≡ x1(∆)− x2(∆ + x1(∆)) =
α(1 + 1/(4γ))

γ
∆ +

1

4γ2
(1− α).

Clearly, this is a strictly monotone (and linear) function with only one zero; call this zero ∆̃.

Consequently, if firms play myopic and repeatedly, the market will tip for all initial quality

differences but ∆̃. Now consider the profit difference between investing x∗(∆) and investing
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some x in the current period (assuming that one does not grab the whole market), that is, for

firm 1 consider:

f(x,∆) ≡ 1 + ∆ + x∗(∆)

2
− c(x∗(∆), D1(∆))−

[
1 + ∆ + x

2
− c(x,D1(∆))

]
.

Clearly, f ≥ 0 is a quadratic function in x with its minimum at x = x∗(∆). Hence, for any

ε′ > 0, we can find a δ′ such that f(x,∆) ≥ δ′/(1−δ′) if x 6∈ [x∗(∆)−ε′, x∗(∆)+ε′] (assuming

that ∆ ∈ [−1, 1]).

Now for a given ε > 0, choose ε′ > 0 such that d(∆) > 2ε′ if ∆ 6∈ [∆̃− ε/2, ∆̃ + ε/2]. For

this ε′, determine δ′ as in the previous paragraph. Note that neither firm will deviate from

x∗(∆) by more than ε′ if δ ≤ δ′ as the possible gain in the future is bounded by 1/(1 − δ)

(and as it is in the future this potential gain is discounted by δ). Hence, when δ ≤ δ′ and

∆ 6∈ [∆̃ − ε/2, ∆̃ + ε/2], then ∆ will change qualitatively as in d and the market will tip

eventually.
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Dengler, S. and J. Prüfer (2016). Consumers’ privacy choices in the era of big data. mimeo,

Tilburg University.

46



Economides, N. (1996). The economics of networks. International Journal of Industrial

Organization 14 (6), 673–699.

Edelman, B. (2015). Does Google leverage market power through tying and bundling? Journal

of Competition Law and Economics 11 (2), 365–400.

Edelman, B., M. Ostrovsky, and M. Schwarz (2007). Internet advertising and the generalized

second-price auction: Selling billions of dollars worth of keywords. American Economic

Review 97 (1), 242–259.

Einav, L. and J. Levin (2014). The data revolution and economic analysis. Innovation Policy

and the Economy 14 (1), 1–24.

Fudenberg, D. and J. Tirole (1991). Game theory. MIT Press Cambridge, MA.

Goldfarb, A. and C. Tucker (2011). Online display advertising: Targeting and obtrusiveness.

Marketing Science 30 (3), 389–404.

Hagiu, A. and B. Jullien (2011). Why do intermediaries divert search? RAND Journal of

Economics 42 (2), 337–362.

Halaburda, H., B. Jullien, and Y. Yehezkel (2016). Dynamic competition with network exter-

nalities: Why history matters. NET Institute Working Paper No. 13-10.

He, D., A. Kannan, R. P. McAfee, T.-Y. Liu, T. Qin, and J. M. Rao (2017). Scale effects in

web search. mimeo.

Iskhakov, F., J. Rust, and B. Schjerning (2015). Recursive lexicographical search: Finding all

Markov perfect equilibria of finite state directional dynamic games. Review of Economic

Studies 83 (2), 658–703.

Lianos, I. and E. Motchenkova (2013). Market dominance and search quality in the search

engine market. Journal of Competition Law and Economics 9 (2), 419–455.

Mailath, G. J. and L. Samuelson (2006). Repeated games and reputations: long-run relation-

ships. Oxford University Press.

Maskin, E. and J. Tirole (1988). A theory of dynamic oligopoly, i: Overview and quantity

competition with large fixed costs. Econometrica 56 (3), 549–569.

Mayer-Schönberger, V. and K. Cukier (2013). The rise of big data. Foreign Affairs, May/June

Issue.

47



McAfee, P., J. Rao, A. Kannan, D. He, T. Qin, and T.-Y. Liu (2015). Mea-

suring scale economies in search. http://www.learconference2015.com/wp-

content/uploads/2014/11/McAfee-slides.pdf, 2 June 2015.

Rochet, J.-C. and J. Tirole (2006). Two-sided markets: A progress report. RAND Journal of

Economics 37 (3), 645–667.

Shapiro, C. and H. Varian (1999). Information Rules: A Strategic Guide to the Network

Economy. Harvard Business Review Press.

Taylor, G. (2013). Search quality and revenue cannibalization by competing search engines.

Journal of Economics & Management Strategy 22 (3), 445–467.

The Economist (2015). Does Deutschland do digital? November 21, 2015.

The Economist (2016). Of profits and prophesies. February 6, 2016.

The New York Times (2012). Big data: Rise of the machines. December 31, 2012.

The New York Times (2015a). Apple and Google create a buzz at Frankfurt motor show.

September 17, 2015.

The New York Times (2015b). IPhone 6s’s hands-free Siri is an omen of the future. September

22, 2015.

Wall Street Journal (2015). Uber valued at more than $50 billion. July 31, 2015.

Zuboff, S. (2016). The secrets of surveillance capitalism. Frankfurter Allgemeine Zeitung,

March 5, 2016.

48


